Verification Manual

Authors:

Ferenc Papp

Ph.D. Dr.habil Associate Professor of Steel Structures Budapest University of Technology and Economics

József Szalai

Ph.D.

technical director

András Herbay

structural engineer M.Sc

Péter Wálny

structural engineer M.Sc Consteel Solutions Ltd

ONSTEEL

Content

1.	Cross-sections	3
	1.1 Theoretical background	3
	1.2 Cross sectional properties	4
	WE-02: Elastic cross-sectional properties of cold formed sections	6
	WE-03: Plastic cross-sectional properties of hot rolled and welded sections	8
	WE-04: Effective cross-sectional area	8
	WE-05: Effective cross-sectional modulus	. 10
	1.3 Elastic stresses	. 17
	WE-06: Elastic stresses in hot rolled section	. 17
	WE-07: Elastic stresses in welded section	. 19
	1.4 Design resistances	. 22
	WE-08: Compression (Class 2 section)	. 22
	WE-09: Compression (Class 4 section)	. 23
	WE-10: Bending about major axis (Class 1 section)	. 24
	WE-11: Bending about minor axis (Class 1 section)	. 25
	WE-12: Bending about major axis (Class 4 section)	. 26
	WE-13: Bending about minor axis (Class 4 section)	. 27
	WE-14: Shear of web (Class 1 section)	. 29
	WE-15: Bending with shear effect (Class 1 section)	. 30
	WE-16: Bending and Axial Force (Class 1 section)	. 31
	WE-17: Bending and Axial Force (Class 3 section)	. 33
	WE-18: Bending and Axial Force (Class 4 section)	. 34
	WE-19: Biaxial bending with compression force effect (Class 2 section)	. 36
2.	Analysis	. 38
	2.1 Theoretical background	38
	2.2 Stress analysis	38
	2.2.1 Geometrically linear (first order) theory	. 39
	WE-20 Compressed member	39
	WE-21 Bended member	41
	WE-22 Member in torsion (concentrated twist moment)	44
	WE-23 Member in torsion (torsion by transverse concentrated load on mono-	••••
	symmetric I section)	. 48
	2.2.2 Geometrically nonlinear (second order) theory	. 52
	WE-24 Member subjected to bending and compression	. 52
	WE-25 Member subjected to biaxial bending and compression	. 54
	2.3 Stability analysis	. 58
	WE-26 Lateral torsional buckling (double symmetric section & constant bending	
	moment)	. 58
	WE-27 Lateral torsional buckling (double symmetric section & triangular bending	
	moment distribution)	. 60
	WE-28 Lateral torsional buckling (mono-symmetric section & constant moment)	. 62
	WE-29 Lateral torsional buckling (mono-symmetric section & triangular moment	
	distribution)	. 65
	WE-30 Lateral torsional buckling (C section & equal end moments)	. 68
	WE-31 Lateral torsional buckling (C section & equal end moments)	. 70
	WE-32 Flexural-torsional buckling (U section)	. 73

VERIFICATION MANUAL

WE-33 Interaction of flexural buckling and LTB (symmetric I section & equal	end
moments and compressive force)	76
3. Design	
3.1 Simple members	
WE-34: Unrestrained beam with eccentric point load	
WE-35: Crane beam subject to two wheel loads	
WE-36 Simply supported beam with lateral restraint at load application point	
WE-37 Simply supported laterally unrestrained beam	
WE-38 Simply supported beam with continuous lateral and twist restraint	
WE-39 Two span beam	
WE-40 Simply supported beam	
3.2 Simple structures	
WE-41 Analysis of a single bay portal frame	
WE-42 Analysis of a continuous column in a multi-storey building using an H-	section
4. Special issues	
WE-43 Dynamic analysis of a footbridge	
5. Reference publications with ConSteel results	

1. Cross-sections

1.1 Theoretical background

The ConSteel software uses three cross-sectional models:

- Solid Section Model (GSS)
- Elastic Plate Segment Model (EPS)
- Plastic Plate Region Model (PPR)

Cross-sectional properties are computed on these cross-sectional models. The elastic properties given by the GSS model are used in the Analysis module, while the elastic properties given by the EPS and the plastic properties given by the PPR model are used in the Design module of the ConSteel software.

The theoretical background of the GSS model and the computation of the cross-sectional properties are published in the following textbook:

PILKEY, D.W.: Analysis and Design of Elastic Beams: Computational Methods, Wiley, 2002, ISBN:978-0-471-38152-5, pp.153-166 (http://eu.wiley.com/WileyCDA/WileyTitle/productCd 0471381527.html)

The theoretical background of the EPS and PPR models and the computation of the relevant cross-sectional properties are published in the following textbook and article:

- KOLBRUNNER, F.C. and BASLER, K: Torsion, Springer, pp. 96-128., Berlin 1966
- PAPP, F., IVÁNYI, M. and JÁRMAI, K.: Unified object-oriented definition of thin-walled steel beamcolumn cross-sections, Computers & Structures 79, 839-852, 2001

The EPS model of the HEA300 hot-rolled section is illustrated in the **Figure 1**, the GSS model is illustrated in the **Figure 2**.

Fig.1 EPS model of the HEA300 section

Fig.2 GSS model of the HEA300 section

1.2 Cross sectional properties

The cross-sectional properties computed by the ConSteel software are checked in the following **Worked Examples** (WE-01 to We-05).

WE-01: Elastic cross-sectional properties of hot rolled sections

Table 1 contains some common hot-rolled sections. The third column of the table shows the elastic cross-sectional properties published in the **Profil ARBED** catalogue. The next columns show the cross-sectional properties computed by the ConSteel software based on both the GSS and the EPS models. The table shows the ratio of the properties given by the catalogue and by the ConSteel software.

section	property	product		Co	nSteel	
		catalogue ¹	GSS ²	1/2	EPS ³	1/3
	A $[mm^2]$	11.250	11.311	0.995	11.253	0,999
	$I_{y} [mm^{4}]$	182.600.000	183.495.496	0,995	182.553.772	1,000
HEA300*	$I_z [mm^4]$	63.100.000	63.111.171	0,999	63.000.002	1,002
	$I_t [mm^4]$	851.700	880.686	0,967	851.731	1,000
	I_{ω} [mm ⁶]	$1,200 \times 10^{12}$	$1,173 \times 10^{12}$	1,023	$1,200 \times 10^{12}$	1,000
	A $[mm^2]$	98.820	9.917	0,996	9.882	1,000
	$I_y [mm^4]$	337.400.000	338.882.704	0,996	337.349.907	1,000
IPE450*	I _z [mm ⁴]	16.760.000	16.765.473	1,000	16.690.234	1,004
	$I_t [mm^4]$	668.700	688.277	0,972	668.740	1,000
	I_{ω} [mm ⁶]	791,0x10 ⁹	$780,2x10^9$	1,014	791,0 x10 ⁹	1,000
	A $[mm^2]$	3.520	3.475	1,013	3.475	0,987
SHS	$I_y [mm^4]$	11.900.000	11.688.701	1,018	11.651.937	1,021
150x6.3**	$I_z [mm^4]$	11.900.000	11.688.701	1,018	11.651.863	1,021
	$I_t [mm^4]$	19.100.000	19.221.994	0,994	19.144.461	0,998
	$I_{\omega}[mm^6]$	-	38.710.832	-	0	-

Tab.1 Elastic cross-sectional properties of hot rolled sections

VERIFICATION MANUAL

	A $[mm^2]$	4.210	4.221	0,997	4.185	1,006
	$I_{y} [mm^{4}]$	23.900.000	23.699.446	1,008	23.087.091	1,035
CHS	$I_z [mm^4]$	23.900.000	23.699.383	1,008	23.086.742	1,035
219.1x6.3**	$I_t [mm^4]$	47.700.000	47.398.828	1,006	45.572.785	1,047
	I_{ω} [mm ⁶]	-	1	-	2	-
	A $[mm^2]$	2.271	2.273	0,999	2.256	1,007
	$I_y [mm^4]$	3.280.000	3.270.741	1,003	3.322.336	0,987
L 100x12*	$I_z [mm^4]$	854.200	856.647	0,997	830.584	1,028
	$I_t [mm^4]$	110.790	120.086	0,922	108.277	1,023
	I_{ω} [mm ⁶]	-	72.790.004	-	0	-

* Profil ARBED, October 1995

** Mannesmann-Stahlbau-Hohlprofile (MSH), Technische Information 1

Evaluation

The GSS model gives accurate results for the elastic cross-sectional properties used in the *Analysis*, see **Figure 3** for case of IPE450 section. The greatest deviations to the values of the Profil ARBED catalogue can be found in the torsional properties, where the maximum deviation is not more than 3,3% in I_t, excepting the L 100x12 section where it is 7,8% (it is mentioned that the I_t of L section does not matter too much in the analysis).

The EPS model is a simplified engineering model which gives approximated values for the elastic cross-sectional properties used in the design, see **Figure 4** for case of IPE450 section. The greatest deviation to the values of the Profil ARBED catalogue is 3,5% in I_y and 4,7% in I_t of the CHS219,1x6,3 section, (it is mentioned that I_t of CHS sections does not matter too much in the design).

Fig.3 GSS model and the computed properties of the IPE450 section

Fig.4 EPS model and the computed properties of the IPE450 section

WE-02: Elastic cross-sectional properties of cold formed sections

Table 2 contains some common cold-formed sections. The third column of the table shows the inertia moment about the Y-Y global system given in the **Lindab** catalogue. The next columns show the inertia moment computed by the ConSteel Software based on both GSS and EPS models. The table shows the ratio of the properties given by the catalogue and by the ConSteel Software.

section	property	Lindab	ConSteel			
		catalogue ¹	GSS ²	1/2	EPS ³	1/3
Lindab Z200*	$I_{Y} [mm^4]$	4.431.000	4.488.159	0,987	4.636.548	0,956
2 mm						
Lindab C150*	$I_{Y} [mm^{4}]$	1.262.000	1.273.452	0,991	1.332.359	0,947
1,5 mm						

Tab.2 Elastic cross-sectional properties of cold formed sections

* Lindab Construline, Technical information - Z-C-U sections (in Hungarian)

Fig.5 GSS model and the computed I_Y property of the Z200-2mm cold formed section

VERIFICATION MANUAL

Fig.6 EPS model and the computed I_Y property of the Z200x2mm cold formed section

Evaluation

The GSS model (see **Figure 5**) provides accurate result for the cold formed crosssectional property. The EPS model (see **Figure 6**) is a simplified engineering model where the radiuses of the cross-sectional corners are neglected. This approximation results in 5-6% deviation to the exact values.

WE-03: Plastic cross-sectional properties of hot rolled and welded sections

Table 3 contains some common hot rolled and welded sections. The third column of the table shows the plastic cross-sectional modulus given by the **Lindab** catalogue. The next columns show the $W_{pl,y}$ and $W_{pl,z}$ properties computed by the ConSteel software based on the PPR model (which is generated from the EPS model automatically). The last column of the table shows the ratio of the properties given by the catalogue and by the ConSteel software.

section	property	catalogue ¹	ConSte	el
		/theory	PPR ²	1/2
HEA450*	$W_{pl.y}$ [mm ³]	3.216.000	3.215.868	1,000
	$W_{pl.z}$ [mm ³]	965.500	945.000	1,022
IPE450*	$W_{pl.y}$ [mm ³]	1.702.000	1.701.793	1,000
	$W_{pl.z}$ [mm ³]	276.400	263.530	1,049
UAP250*	$W_{pl.y} [mm^3]$	391.800	384.325	1,019
	$W_{pl.z} [mm^3]$	87.640	86.303	1,015
	$W_{pl,z} [mm^3]$	900.000	900.000	1.000
SHS250x6,3***	$W_{pl.y} [mm^3]$		544.095	
	$W_{pl.z} [mm^3]$		544.094	
CHS329x6,3***	$W_{pl.y}$ [mm ³]		623.277	
	$W_{pl.z}$ [mm ³]		623.273	
W1**	$W_{pl.y} [mm^3]$	2.077.000	2.077.440	1,000
tlange: 240-16 web: 400-12	$W_{pl.z} [mm^3]$	460.800	460.800	1.000
W2**	$W_{pl.y} [mm^3]$	6.840.000	6.840.000	1.000
flange: 300-20 web: 800-12				

Tab.3 Plastic cross-sectional properties of hot rolled and welded sections

* Profil ARBED, October 1995

** double symmetric welded I section

*** Mannesmann-Stahlbau-Hohlprofile (MSH), Technische Information 1

Evaluation

The PPR model (which is generated from the EPS model automatically) gives approximated numerical result for the plastic cross-sectional modulus of cross-sections. The maximum deviation of the computed values to the exact results is less than 2-3%, excepting the $W_{pl,z}$ property where the effect of the neck area is considerable (for example in case of IPE450 the deviation is 4,9% for the safe).

WE-04: Effective cross-sectional area

Figure 7 shows a double symmetric welded I section (**W4**), which classified to Class 4 due to pure compression. The effective area is calculated by hand using the formulas given by EC3-1-1 and EC3-1-5 and by the ConSteel software.

VERIFICATION MANUAL

Fig.7 Class 4 double symmetric welded I section (W4).

A) Calculation by hand

Section data flange $b_f := 240 \cdot mm$ $t_f := 6 \cdot mm$ $h_w := 400 \cdot mm$ web $t_w := 6 \cdot mm$ $f_{y} \coloneqq 275 \cdot \frac{N}{mm^{2}} \qquad \epsilon \coloneqq \sqrt{\frac{235 \frac{N}{mm^{2}}}{f_{y}}} = 0.924$ $\Psi \coloneqq 1.0$ weld **Design strength** Stress gradient $\Psi := 1.0$ Effective width of web $c_w := h_w - 2 \cdot a = 394 \cdot mm$ $k_{\sigma} := 4.0$ $\lambda_{\rm W} := \frac{\frac{c_{\rm W}}{t_{\rm W}}}{28.4\epsilon \cdot \sqrt{k_{\sigma}}} = 1.251$ $\rho_{\rm W} := \frac{\left[\lambda_{\rm W} - 0.055(3 + \Psi)\right]}{{\lambda_{\rm W}}^2} = 0.659$ $b_{eff.w} := \rho_w \cdot c_w = 259.622 \cdot mm$ $c_{f} := \frac{b_{f}}{2} - \frac{t_{w}}{2} - a = 114 \cdot mm$ Effective width of flange $k_{\sigma} := 0.43$ $\lambda_{f} := \frac{\frac{c_{f}}{t_{f}}}{28.4\varepsilon \cdot \sqrt{k_{\sigma}}} = 1.104$ $\rho_f := \frac{\left(\lambda_f - 0.188\right)}{{\lambda_f}^2} = 0.752$ $b_{eff.f} := \rho_f \cdot c_f = 85.698 \text{ mm}$ Effecetiv e area

$$A_{\text{eff}} := \left(b_{\text{eff.}w} + 2 \cdot a\right) \cdot t_w + 4 \cdot \left(b_{\text{eff.}f} + \frac{t_w}{2} + a\right) \cdot t_f = 3794 \cdot mm^2$$

B) Computation by ConSteel

First by the Section administration/W4/Properties/Model/Sectional forces tools a virtual (for example -100 kN) compressive force should be defined, than the effective EPS model and the relevant effective cross-sectional properties can be available, see Figure 8.

Fig.8 Effective EPS model of the W4 section due to pure compression

Evaluation

Table 4 shows the effective cross-sectional areas of the W4 welded I section calculated by hand using the formulas of EC3-1-1 and EC3-1-5 and by the ConSteel software. The deviation is 4% for the safe (the effective EPS model neglects the web thickness and the size of the weld in the calculation of the basic plate width).

Tab.4 Effective cross-sectional area of welded I section							
section	EPS ²	1/2					
W4	A_{eff} [mm ²]	3.794	3.645	1,040			

WE-05: Effective cross-sectional modulus

Figure 9 shows a double symmetric welded I section (W5), which classified to Class 4 due to bending about the major and the minor axes. The effective sectional modulus is calculated by hand using the formulas of EC3-1-1 and EC3-1-5 and by the ConSteel software.

Fig.9 Class 4 double symmetric welded I section (W5)

A) Calculation by hand

Bending about major axis

Section data	flange	$b_f := 240 \cdot mm$	$t_{f} := 6 \cdot mm$
	web	$h_w := 800 \cdot mm$	$t_{W} := 6 \cdot mm$
	weld	$a := 3 \cdot mm$	$235 \frac{N}{2}$
Design strength		$f_y := 275 \cdot \frac{N}{mm^2}$	$\varepsilon := \sqrt{\frac{mm^2}{f_y}} = 0.924$
Effective width of fla	nge	$c_{\mathbf{f}} := \frac{\mathbf{b}_{\mathbf{f}}}{2} - \frac{\mathbf{t}_{\mathbf{W}}}{2} - \mathbf{a} =$	114· mm
		$k_{\sigma} := 0.43$	
		<u>c</u> f	
		$\lambda_{f} := \frac{t_{f}}{28.4\epsilon \cdot \sqrt{k_{\sigma}}} =$	1.104
		$ \rho_{f} := \frac{\left(\lambda_{f} - 0.188\right)}{\lambda_{f}^{2}} = $	0.752
		$b_{eff.f} := \rho_f \cdot c_f = 85.6$	598 mm
Working width		$b_{w.f} := 2b_{eff.f} + t_w$	$+a = 180.4 \cdot mm$
Effective width of we	eb using	iterative procedu	re
<u>Step 1</u>			
Centroid of sectior	า	$A_1 := (b_{w f} + b_f) \cdot t_f$	$+ h_{w} \cdot t_{w} = 7322.4 \text{ mm}^{2}$

 $A_1 := (b_{w.f} + b_f) \cdot t_f + h_w \cdot t_w = 7322.4 \text{ mm}^2$ $S_{Y.1} := (b_f \cdot t_f - b_{w.f} \cdot t_f) \cdot \left(\frac{h_w}{2} + \frac{t_f}{2}\right) = 144123 \cdot \text{mm}^3$ $Z_{S.1} := \frac{S_{Y.1}}{A_1} = 19.683 \text{ mm}$ $\Psi := -\frac{\frac{h_w}{2} - a - Z_{S.1}}{\frac{h_w}{2} - a + Z_{S.1}} = -0.906$

Stress gradient in web

Effctive width of web

 $\mathbf{b}_{\mathbf{W}} := \mathbf{h}_{\mathbf{W}} - 2 \cdot \mathbf{a} = 794 \cdot \mathbf{mm}$

$$\begin{split} k_{\sigma} &:= 7.81 - 6.29 \,\Psi + 9.78 \,\Psi^2 = 21.525 \\ \lambda_w &:= \frac{\frac{b_w}{t_w}}{28.4 \epsilon \cdot \sqrt{k_{\sigma}}} = 1.086 \\ \rho_w &:= \frac{\left[\lambda_w - 0.055(3 + \Psi)\right]}{\lambda_w^2} = 0.823 \\ b_c &:= \frac{b_w}{2} + Z_{S,1} = 416.683 \text{ mm} \\ b_{eff.w} &:= \rho_w \cdot \frac{b_w}{1 - \Psi} = 342.861 \text{ mm} \\ b_{e1} &:= 0.4 b_{eff.w} = 137.1 \text{ mm} \\ b_{e2} &:= 0.6 b_{eff.w} = 205.7 \text{ mm} \\ b_1 &:= b_{e1} + a = 140.1 \text{mm} \\ b_0 &:= b_c - b_{e1} - b_{e2} = 73.821 \text{ mm} \\ b_2 &:= h_w - (b_c + a) + b_{e2} = 586.034 \text{ mm} \end{split}$$

<u>Step 2</u>

Centroid of section

Stress gradient in web

Effctive width of web

$$A_{2} := A_{1} - b_{0} \cdot t_{w} = 6879.4 \text{ mm}^{2}$$

$$S_{Y.2} := S_{Y.1} + b_{0} \cdot t_{w} \cdot \left(\frac{h_{w}}{2} - b_{1} - \frac{b_{0}}{2}\right) = 242872 \cdot \text{mm}^{3}$$

$$Z_{S} := \frac{S_{Y.2}}{A_{2}} = 35.304 \text{ mm}$$

$$\Psi := -\frac{\frac{h_{w}}{2} - a - Z_{S}}{\frac{h_{w}}{2} - a + Z_{S}} = -0.837$$

$$k_{\sigma} := 7.81 - 6.29 \Psi + 9.78 \Psi^{2} = 19.919$$

$$\lambda_{\rm W} := \frac{\frac{b_{\rm W}}{t_{\rm W}}}{28.4\epsilon \cdot \sqrt{k_{\rm G}}} = 1.129$$

$$\rho_{\rm W} := \frac{\left[\lambda_{\rm W} - 0.055(3 + \Psi)\right]}{\lambda_{\rm W}^2} = 0.792$$

$$b_{\rm c} := \frac{b_{\rm W}}{2} + Z_{\rm S} = 432.304 \text{ mm}$$

$$b_{\rm eff. W} := \rho_{\rm W} \cdot \frac{b_{\rm W}}{1 - \Psi} = 342.445 \text{ mm}$$

$$b_{\rm eff. W} := 0.4b_{\rm eff. W} = 137 \cdot \text{mm}$$

$$b_{\rm e2} := 0.6b_{\rm eff. W} = 205.5 \cdot \text{mm}$$

$$b_{\rm e1} := b_{\rm e1} + a = 140 \text{ mm}$$

 $b_{1} := b_{e1} + a = 140 \cdot mm$ $b_{0} := b_{c} - b_{e1} - b_{e2} = 89.9 \cdot mm$ $b_{2} := h_{w} - (b_{c} + a) + b_{e2} = 570.2 \cdot mm$

VERIFICATION MANUAL

<u>Step 3</u>

web

Centroid of section

$$A_{3} := A_{1} - b_{0} \cdot t_{w} = 6783.222 \text{mm}^{2}$$

$$S_{Y.3} := S_{Y.1} + b_{0} \cdot t_{w} \cdot \left(\frac{h_{w}}{2} - b_{1} - \frac{b_{0}}{2}\right) = 260091 \cdot \text{mm}^{3}$$

$$Z_{S} := \frac{S_{Y.3}}{A_{3}} = 38.343 \text{ mm}$$

$$\Psi := -\frac{\frac{h_{w}}{2} - a - Z_{S}}{\frac{h_{w}}{2} - a + Z_{S}} = -0.824$$
eb
$$k_{\sigma} := 7.81 - 6.29 \Psi + 9.78 \Psi^{2} = 19.63$$

Effctive width of web

Stress gradient in

$$\lambda_{w} := \frac{\frac{b_{w}}{t_{w}}}{28.4\epsilon \cdot \sqrt{k_{\sigma}}} = 1.138$$

$$\rho_{w} := \frac{\left[\lambda_{w} - 0.055(3 + \Psi)\right]}{\lambda_{w}^{2}} = 0.787$$

$$b_{c} := \frac{b_{w}}{2} + Z_{S} = 435.3 \cdot \text{mm}$$

$$b_{eff.w} := \rho_{w} \cdot \frac{b_{w}}{1 - \Psi} = 342.4 \cdot \text{mm}$$

$$b_{e1} := 0.4b_{eff.w} = 137 \cdot \text{mm}$$

$$b_{e2} := 0.6b_{eff.w} = 205.4 \cdot \text{mm}$$

$$b_{1} := b_{e1} + a = 140 \cdot \text{mm}$$

$$b_{0} := b_{c} - b_{e1} - b_{e2} = 92.94 \cdot \text{mm}$$

$$b_{2} := h_{w} - (b_{c} + a) + b_{e2} = 567.1 \cdot \text{mm}$$

Inertia moment about y-y axis

$$\begin{split} h_{1} &:= \frac{h_{w}}{2} + Z_{S} = 438.343 \text{ mm} \\ h_{2} &:= h_{w} - h_{1} = 361.657 \text{ mm} \\ I_{1} &:= b_{w.f} t_{f'} \left(h_{1} + \frac{t_{f}}{2} \right)^{2} = 210829061 \text{ mm}^{4} \\ I_{2} &:= b_{f'} t_{f'} \left(h_{2} + \frac{t_{f}}{2} \right)^{2} = 191483328 \text{ mm}^{4} \\ I_{3} &:= \frac{t_{w'} b_{1}^{-3}}{12} + b_{1'} t_{w'} \left(h_{1} - \frac{b_{1}}{2} \right)^{2} = 115318910 \text{ mm}^{4} \\ I_{4} &:= \frac{t_{w'} b_{2}^{-3}}{12} + b_{2'} t_{w'} \left(h_{2} - \frac{b_{2}}{2} \right)^{2} = 111947503 \text{ mm}^{4} \\ I_{eff,y} &:= I_{1} + I_{2} + I_{3} + I_{4} = 629578802 \text{ mm}^{4} \end{split}$$

Sectional moduli

$$W_{eff,y1} := \frac{I_{eff,y}}{h_1 + t_f} = 1416875 \text{ mm}^3$$
$$W_{eff,y2} := \frac{I_{eff,y}}{h_2 + t_f} = 1712409 \text{ mm}^3$$

Bending about minor axis

$$\begin{array}{ll} \mbox{Effective width of flange} & c_{f} := \frac{b_{f}}{2} - \frac{t_{w}}{2} - a = 114 \cdot mm \\ \Psi := 0 & k_{\sigma} := 0.57 \\ \\ \lambda_{f} := \frac{\frac{c_{f}}{t_{f}}}{28.4\epsilon \cdot \sqrt{k_{\sigma}}} = 0.959 \\ \\ \rho_{f} := \frac{(\lambda_{f} - 0.18)}{\lambda_{f}^{2}} = 0.839 \\ \\ b_{eff.} := \rho_{f} c_{f} = 95.601 \cdot mm \\ \\ b_{w.f} := \frac{b_{f}}{2} + b_{eff.f} + \frac{t_{w}}{2} + a = 221.6 \cdot mm \\ \end{array}$$

<u>Step 2</u>

Centroid of section

$$A_{2} := 2b_{w.f} t_{f} + (b_{eff.w} + 2 \cdot a) \cdot t_{w} = 4420.5 \text{ mm}^{2}$$

$$S_{Y.2} := 2 \cdot b_{w.f} t_{f} \cdot \frac{(b_{f} - b_{w.f})}{2} = 24462.9 \text{ mm}^{3}$$

$$Y_{S.2} := \frac{S_{Y.2}}{A_{2}} = 5.534 \cdot \text{mm}$$

$$\label{eq:YS2} \mbox{Stress gradient in flange} \quad \Psi := \frac{Y_{S,2} + \frac{t_W}{2} + a}{\frac{b_f}{2} + Y_{S,2}} = 0.092$$

 $\mathbf{b}_{\mathbf{W},\mathbf{W}} := \mathbf{b}_{\text{eff.}\mathbf{W}} + 2 \cdot \mathbf{a} = 293.5 \cdot \mathbf{mm}$

 $\label{eq:kappa} \text{Effective width of flange} \quad \ \ k_{\sigma}:=0.57-0.2 \mathbf{k}\Psi+0.07\Psi^2=0.551$

$$\lambda_{f} := \frac{\frac{c_{f}}{t_{f}}}{28.4\varepsilon \cdot \sqrt{k_{\sigma}}} = 0.975$$

$$\rho_{f} := \frac{(\lambda_{f} - 0.188)}{\lambda_{f}^{2}} = 0.828$$

$$b_{eff.f} := \rho_{f} \cdot c_{f} = 94.4 \cdot mm$$

$$b_{w.f} := \frac{b_{f}}{2} + b_{eff.f} + \frac{t_{w}}{2} + a = 220.4$$

mm

axis

VERIFICATION MANUAL

Inertia moment about z-z

$$I_{1} := b_{w.w'} t_{w} \cdot Y_{S,2}^{2} = 53939 \cdot mm^{4}$$

$$I_{2} := 2 \cdot \left(t_{f} \cdot \frac{b_{w.f}^{3}}{12} + b_{w.f} \cdot t_{f} \cdot Y_{S,2}^{2} \right) = 10787084 mm^{4}$$

$$I_{eff,z} := I_{1} + I_{2} = 10841023 mm^{4}$$

Sectional moduli

$$W_{\text{eff.}z1} := \frac{I_{\text{eff.}z}}{\frac{b_{\text{f}}}{2} - Y_{\text{S.}2}} = 94710 \cdot \text{mm}^{3}$$
$$W_{\text{eff.}z2} := \frac{I_{\text{eff.}z}}{b_{\text{w.}\text{f}} - \frac{b_{\text{f}}}{2} + Y_{\text{S.}2}} = 102338 \cdot \text{mm}^{3}$$

B) Computation by ConSteel

First by the Section administration/W5/Properties/Model/Sectional forces tools a virtual bending moment (for example M_y =-100 kNm than M_z =100 kNm) should be defined, than the effective EPS model and the relevant effective cross-sectional properties can be available, see **Figure 10**.

Fig.10 Effective EPS model of the W5 section due to bending about major axis

Table 5 shows the effective inertia moment and sectional modulus of the **W5** welded I section computed by the theoretical formulas of EC3-1-1 and EC3-1-5 and by the ConSteel software. The results are accurate, the maximum deviation in sectional modulus is 2,9% for the safe (the effective EPS model neglects the web thickness and the size of the weld in calculation the basic plate width, but uses iterative procedure).

section	property	theory ¹	effective EPS ²	1/2
	$\mathbf{I}_{eff.y} [mm^4]$	6,296 x 10 ⁸	6,174 x 10 ⁸	1,020
	$\mathbf{W}_{\mathbf{eff}}$.y1 [mm ³]	1.414.875	1.374.382	1,029
W5	$W_{eff.y2}$ [mm ³]	1.712.409	1.701.874	1,006
	$\mathbf{W}_{\mathbf{eff}}$.z1 [mm ³]	94.710	94.602	1,001
	$\mathbf{W}_{\mathbf{eff}}$.z2 [mm ³]	102.338	101.580	1,007

Tab.5 Effective cross-sectional modulus of welded I section

1.3 Elastic stresses

Elastic stresses of sections computed by the ConSteel software are checked in the following **Worked Examples** (WE-06 and WE-07).

WE-06: Elastic stresses in hot rolled section

Elastic stresses in the HEA300 hot-rolled section are calculated by hand using the theoretical formulas and computed by the ConSteel software.

A) Calculation by hand

Section: HEA300

Properties from Profil ARBED catalogue

A := 11250 mm² $t_w := 8.5 mm$ $I_y := 182600000 mm⁴$ $W_{el.y} := 1260000 mm³$ $S_v := 692088 mm³$ (by EPSmodel)

 $I_{\omega} := 120000000000 \, \text{mm}^6$

ω		
Compression	$N_{X} := 400 \cdot kN$	$\sigma_{\rm N} := \frac{N_{\rm X}}{A} = 35.56 \frac{\rm N}{\rm mm^2}$
Bending	$M_y := 240 \cdot kN \cdot m$	$\sigma_{My} := \frac{M_y}{W_{el.y}} = 190.5 \frac{N}{mm^2}$
Shear	$V_z := 220 \cdot kN$	$\tau_{z.max} := \frac{V_z \cdot S_y}{I_y \cdot t_w} = 98.1 \cdot \frac{N}{mm^2}$
Warping	$\mathbf{B} := 5 \cdot \mathbf{k} \mathbf{N} \cdot \mathbf{m}^2$	$\omega := 20700 \cdot \text{mm}^2$ (by EPS)
		$\sigma_{\omega} := \frac{B}{I_{\omega}} \cdot \omega = 86.25 \frac{N}{mm^2}$
Interaction of pure cases	$\sigma_{x.max} = \sigma_N + \sigma_{My}$	$+\sigma_{\omega} = 312.3 \frac{N}{mr^2}$
		111111

A) Computation by ConSteel

The stress are visualized in the Section module, see Figure 11.

Fig.11 Elastic stresses in the HEA300 section by the GSS and the EPS model **Evaluation**

Table 6 shows the stress components in the HEA300 cross-section calculated by hand using theoretical formulas and by the ConSteel software using the GSS and EPS cross-sectional models. The GSS model may be the accurate in warping stress since it takes the change of the stresses through the thickness of the plates into consideration. The EPS model gives 5,0% deviation in bending stress to the theoretical result (stresses visualized in Analysis module are calculated in the counter line of the plates, but in the Design module they are calculated in the extreme fibers, see value in brackets).

	stress		ConSteel				
section	component	theory ¹	GSS ²	1/2	EPS ³	1/3	
	$[N/mm^2]$						
	$\sigma_{\rm N}$	35,56	35,36	1.006	35,55	1.000	
	σ_{My}	190,5	189,6	1.005	181,43	1.050	
HEA300					(190,4)	1.000	
	σ_{ω}	86,25	83,21	1.037	86,27	0,999	
	σ _x	312,3	308,2	1.013	303,24	1.030	

Tab.6 Elastic stresses in hot rolled section

WE-07: Elastic stresses in welded section

Figure 12 shows a symmetric welded hat section (W7), which classified to Class 3 due to the both compression and bending about the major axis. The elastic stresses are calculated by hand using the theoretical formulas and by the ConSteel software.

A) Calculation by hand

Section data flange $b_f := 600 \cdot mm$ $t_f := 30 \cdot mm$ webs $h_w := 450 \cdot mm$ $t_w := 35 \cdot mm$ $b_w := 450 \cdot mm$ weld $a := 8 \cdot mm$ erial $f_y := 275 \cdot \frac{N}{mm^2}$ $\epsilon := \sqrt{235 \frac{N}{\frac{mm^2}{f_y}}} = 0.924$ Material Gross Area $A := b_f \cdot t_f + 2 \cdot h_w \cdot t_w = 49500 \cdot mm^2$ $S_{Y} := b_{f'} t_{f'} \left(\frac{h_{W}}{2} + \frac{t_{f}}{2} \right) = 4320000 \text{ mm}^{3}$ Centroid $Z_{C} := \frac{S_{Y}}{A} = 87.273 \text{ mm}$ $z_{comp} := \frac{h_W}{2} + Z_C = 312.273 \text{ mm}$ Class of section - pure compression flange $c_f := b_w - 2 \cdot a = 434 \cdot mm$ $\eta := \frac{c_{f}}{t_{f}} = 14.467 < 33\varepsilon = 30.506$ Class 1 $c_w := h_w - a = 442 \cdot mm$ web $\eta := \frac{c_W}{t_W} = 12.629 \quad > \quad 10\,\epsilon = 9.244 \\ < \quad 14\,\epsilon = 12.94$ Class 3 - pure bending about major axis web $c_w := h_w - a = 442 \cdot mm$ $\alpha := \frac{z_{\rm comp}}{c_{\rm W}} = 0.706$ $\Psi := -\frac{c_{\rm w} - Z_{\rm C}}{c_{\rm w} + Z_{\rm C}} = -0.670$ $k_{\sigma} := 0.57 - 0.21 \Psi + 0.07 \Psi^2 = 0.742$ $\eta := \frac{c_W}{t_W} = 12.629 \quad < \quad 21 \cdot \varepsilon \cdot \sqrt{k_\sigma} = 16.724$ Class 3

VERIFICATION MANUAL

$$\begin{aligned} \alpha_{\text{plastic}} &:= \frac{2 \cdot h_{w} + b_{f'} \cdot \frac{t_{f}}{t_{w}}}{4 \cdot c_{w}} = 0.800 \\ \eta &:= \frac{c_{w}}{t_{w}} = 12.629 \quad > \quad 10 \frac{\epsilon}{\alpha_{\text{plastic}}} = 11.556 \quad \text{Class 3} \end{aligned}$$
Elastic sectional modulus about major
axis
$$I_{z} &:= b_{f'} t_{f'} \left(\frac{h_{w}}{2} + \frac{t_{f}}{2} - Z_{C}\right)^{2} + 2 \cdot t_{w'} \cdot \frac{h_{w}^{-3}}{12} + 2 \cdot h_{w'} t_{w'} Z_{C}^{-2} = 1191344318 \text{ mm}^{4} \\ z_{1} &:= \frac{h_{w}}{2} + t_{f} - Z_{C} = 167.727 \cdot \text{mm} \quad z_{2} &:= \frac{h_{w}}{2} + Z_{C} = 312.273 \text{ mm} \\ W_{el,z,1} &:= \frac{I_{z}}{z_{1}} = 7102866 \text{ mm}^{3} \qquad W_{el,z,2} &:= \frac{I_{z}}{z_{2}} = 3815076 \text{ mm}^{3} \end{aligned}$$
Elastic stresses
Normal force
$$N_{X} &:= -1200 \cdot \text{kN} \\ \text{Bending moment} \qquad M_{Y} &:= 360 \cdot \text{kN} \text{m} \\ \sigma_{x,1} &:= \frac{N_{X}}{A} - \frac{M_{Y}}{W_{el,z,1}} = -74.9 \frac{N}{mm^{2}} \\ \sigma_{x,2} &:= \frac{N_{X}}{A} + \frac{M_{Y}}{W_{el,z,2}} = 70.1 \cdot \frac{N}{mm^{2}} \end{aligned}$$

B) Computation by ConSteel

The stress are visualized in the Section module, see Figure 13.

Fig.13 Elastic stresses in the W7 welded hat section by the GSS and the EPS model

Evaluation

Table 7 shows the stress components in the **W7** welded hat section calculated by hand using theoretical formulas and by the ConSteel software using the GSS and EPS cross-sectional models. The GSS model is accurate. The EPS model gives 5,1% deviation in bending stress to the theoretical result (stresses visualized in Analysis module are

calculated in the counter line of the plates, but in the Design module they are calculated in the extreme fibers, see value in brackets).

	property				ConSteel		
section		dimension	theory ¹	GSS ²	1/2	EPS ³	1/3
	А	mm ²	49.500	49.500	1.000	49.500	1.000
	Class of flange		1			1	
	Class of web						
	- compression		1			1	
W7	- bending		3			3	
•• /	Iz	$x10^6 \text{ mm}^4$	1.191	1.193	0.998	1.191	1.000
	W _{el.1}	$x10^3 \text{ mm}^3$	7.103	7.111	0.999	7.103	1.000
	$W_{el.2}$ $x10^3$ mm ³	$x10^3 \text{ mm}^3$	3.815	3.819	0.999	3.815	1.000
	$\sigma_{x,1}$ N/mm ²		-74,9	-74.9	1.000	70.4	1.064
						(74,9)	1.000
	$\sigma_{x.2}$	N/mm ²	70,1	70,0	1.001	70.1	1.000

Tab.7 Elastic stresses in welded hat section

1.4 Design resistances

Cross sectional design resistances are calculated by hand using the rules of EC3-1-1 and by the ConSteel software in the following **Worked Examples** (WE-08 to WE-19).

WE-08: Compression (Class 1 section)

The design resistance for pure compression of the **HEA300** hot-rolled section is calculated by hand and by the ConSteel software.

A) Calculation by hand

HEA300 section

Class of section	Class 1
Grade of material	S235
	$f_y := 235 \cdot \frac{N}{mm^2}$
Gross area	$A := 11250 \cdot mm^2$
Partial factor	$\gamma_{M0} \coloneqq 1.0$
Resistance	$N_{pl.Rd} := \frac{A \cdot f_y}{\gamma_{M0}} = 2643.8 \text{kN}$

A) Computation by ConSteel

The computation of the design resistance of the HEA300 section duo to pure compression is shown in **Figure 14**.

Fig.14 Design resistance of HEA300 section for compression

Table 8 shows the design resistance of the HEA300 section for pure compressive force computed by hand and by the ConSteel software. The result of the ConSteel software is accurate.

section	compressive resistance [kN]					
	theory ¹ ConSteel (EPS model) ² 1/2					
HEA300	2.644	2.644	1,000			

WE-09: Compression (Class 4 section)

The design resistance of the welded **W4** section (see WE-04) for pure compression is calculated by hand and by the ConSteel software.

A) Calculation by hand

Class of section	Class 4
Grade of material	S275
	$f_y := 275 \cdot \frac{N}{mm^2}$
Effective area	$A_{\text{eff}} := 3794 \cdot \text{mm}^2$ (see WE – 04)
Partial factor	$\gamma_{M0} := 1.0$
Resistance	$N_{pl.Rd} := \frac{A_{eff} \cdot f_y}{\gamma_{M0}} = 1043.3 \text{ kN}$

A) Computation by ConSteel

The computation of the design resistance of the **W4** welded Class 4 section duo to pure compression is shown in **Figure 15**.

Fig.15 Design resistance of the W4 welded Class 4 section for compression

Table 9 shows the design resistance of the **W4** welded Class 4 section for compressive force computed by hand and by the ConSteel software. The result deviates to the safe (effective EPS model takes the total width of plate for the basic width).

Tab 0	Cross sectional	magistamaa of	W/ wolded	contion for	a manage in a
1 a 9	Cross-sectional	resistance of	w4 welueu	section for	compression

section	compressive resistance [kN]					
	theory 1 ConSteel (EPS model) 2 1/2					
W4	1043,3	1002,3	1,041			

WE-10: Bending about major axis (Class 1 section)

The design resistance of the IPE450 hot-rolled I section for bending about major axis is calculated by hand and by the ConSteel software.

A) Calculation by hand

Class of section	Class 1
Grade of material	S235
	$f_y := 235 \cdot \frac{N}{mm^2}$
Plastic modulus	$W_{pl.y} := 1702000 \text{ mm}^3$ (see WE - 03)
Partial factor	$\gamma_{M0} := 1.0$
Resistance	$M_{pl.y.Rd} := \frac{W_{pl.y}f_y}{\gamma_{M0}} = 400.0 \text{kN} \cdot \text{m}$

A) Computation by ConSteel

The computation of the design resistance of the **IPE450** hot-rolled Class 1 section duo to pure bending about major axis is shown in **Figure 16**.

Fig.16 Design resistance of the IPE450 Class 1 section for bending about major axis

Table 10 shows the cross-sectional resistance of the IPE450 section for pure bending about major axis calculated by hand and by the ConSteel software. The result is accurate.

1	Tab.10 Cross-s	sectional resistance of IPE450 section for bending about n	najor axis
	section	bending resistance about major axis [kNm]	
		1	

section	bending resistance about major and [m m]				
	theory ¹	ConSteel (EPS model) ²	1/2		
IPE450	400,0	399,9	1,000		

WE-11: Bending about minor axis (Class 1 section)

The design resistance of the **HEA450** hot-rolled I section for bending about minor axis is calculated by hand and by the ConSteel software.

A) Calculation by hand

Class of section	Class 1
Grade of material	S235
	$f_y := 235 \cdot \frac{N}{mm^2}$
Plastic modulus	$W_{pl.z} := 965500 \cdot mm^3$ (see WE – 03)
Partial factor	$\gamma_{M0} := 1.0$
Resistance	$M_{pl.z.Rd} := \frac{W_{pl.z}f_y}{\gamma_{M0}} = 226.9 \text{kN} \cdot \text{m}$

B) Computation by ConSteel

The computation of the design resistance of the **HEA450** hot-rolled Class 1 section duo to pure bending about minor axis is shown in **Figure 17**.

Fig.17 Design resistance of the HEA450 Class 1 section for bending about minor axis

Table 11 shows the cross-sectional resistance of the HEA450 section for pure bending about minor axis calculated by theory and by the ConSteel software. The result is accurate (EPS model takes the effect of the neck area approximately).

T. I. 11	C		- C TIE A 450		. 1	- 1 4 -	•	•
1 a d. 1 1	Cross-sectional	resistance	01 HEA450	section to	r benaing	about 1	minor	axis

section	bending resistance about minor axis [kNm]					
	theory ¹ ConSteel (EPS model) ² 1/2					
HEA450	226,9	222,1	1,022			

WE-12: Bending about major axis (Class 4 section)

The design resistance of the welded Class 1 W5 section (see WE-04) for pure bending major axis is calculated by hand and by the ConSteel software.

A) Calculation by hand

Class of section	Class 4
Grade of material	S275
	$f_y := 275 \cdot \frac{N}{mm^2}$
Effective modulus	$W_{eff.y} := 1416875 \text{ mm}^3$ (see WE – 05)
Partial factor	$\gamma_{M0} := 1.0$
Resistance	$M_{eff.y.Rd} := \frac{W_{eff.y} \cdot f_y}{\gamma_{M0}} = 389.6 \text{kN} \cdot \text{m}$

B) Computation by ConSteel

The computation of the design resistance of the **W5** welded section duo to pure bending about minor axis is shown in **Figure 18**.

Fig.18 Design resistance of the W5 welded Class 4 section for bending about major axis

Table 12 shows the cross-sectional resistance of the **W5** welded Class 4 section for pure bending about major axis calculated by hand using the simplified rules of EC3-1-1 and EC3-1-5 and by the ConSteel software. The result is accurate for the safe (effective EPS model computes the effective cross-section by the iterative procedure proposed by EC3-1-5).

Tab.12 Cross-sectional resistance of the W5 welded Class 4 section for bending about major axis

section	bending resistance about major axis [kNm]		
	theory ¹	ConSteel (EPS model) ²	1/2
W5	389,6	378,0	1,031

1) simplified method with no iteration

WE-13: Bending about minor axis (Class 4 section)

The design resistance of the welded **W5** Class 1 section (see WE-04) for pure bending about minor axis is calculated by hand and by the ConSteel software.

A) Calculation by hand

Class of section	Class 4
Grade of material	S275
	$f_y := 275 \cdot \frac{N}{mm^2}$
Effective modulus	$W_{eff.z} := 94710 \cdot mm^3$ (see WE – 05)
Partial factor	$\gamma_{M0} := 1.0$
Resistance	$M_{eff.y.Rd} := \frac{W_{eff.z} \cdot f_y}{\gamma_{M0}} = 26.04 \text{ kN} \text{ m}$

B) Computation by ConSteel

The computation of the design resistance of the Class 1 W5 welded section duo to pure bending about minor axis is shown in Figure 19.

Fig.19 Design resistance of the W5 welded Class 4 section for bending about minor axis

Evaluation

Table 13 shows the cross-sectional resistance of the W5 welded Class 4 section for pure bending about minor axis calculated by the simplified rules of the EC3-1-1 and EC3-1-5 and by the ConSteel software. The result is accurate.

Tab.13 Cross-sectional resistance of the W5 welded section for bending about minor a	· axis
--	--------

section	bending resistance about minor axis [kNm]		
	theory ¹	ConSteel (EPS model) ²	1/2
W5	26,045	26,0	1,002

1) with one iteration step

WE-14: Shear of web (Class 1 section)

The design resistance of the **IPE450** section (see WE-04) for shear in the direction of minor axis is calculated by hand and by the ConSteel software.

A) Calculation by hand

Class of section	Plastic
Grade of material	S235
	$f_y := 235 \cdot \frac{N}{mm^2}$
Shear area	$A_{VZ} := 5085 \cdot mm^2$ (ProfilarBED)
Partial factor	$\gamma_{M0} := 1.0$
Resistance	$V_{pl.Rd} := \frac{A_{vz} \cdot f_y}{\gamma M0 \cdot \sqrt{3}} = 689.9 \cdot kN$

B) Computation by ConSteel

The computation of the shear design resistance of the IPE450 section is shown in Figure 20.

Fig.20 Design shear resistance of the IPE450 section

Evaluation

Table 14 shows the shear cross-sectional resistance of the IPE450 section computed by the ConSteel software. The result is accurate.

Tab.14	Cross-sectional	resistance	of IPE450	section for	web shear

section	shear resistance of web [kN]		
	theory ¹	ConSteel (EPS model) ²	1/2
IPE450	689,9	689,9	1,000

WE-15: Bending with shear effect (Class 1 section)

The design bending resistance about the major axis of the **IPE450** section (see WE-04) with shear effect is calculated by hand and by the ConSteel software.

A) Calculation by hand

Design shear force	$V_{z.Ed} := 500 \cdot kN$
Shear resistance	$V_{pl.Rd} = 689.9 \text{ kN}$ (see WE – 14)
Reduction factor	$\rho := \left(\frac{2 \cdot V_{z, Ed}}{V_{pl, Rd}} - 1\right)^2 = 0.202$
Web area	$d := 378.8 \cdot mm$ $t_W := 9.4 \cdot mm$
	$A_{W} := d \cdot t_{W} = 3560.7 \cdot mm^{2}$
Sectional moduli	$W_{pl.y} := 1702000 \text{ mm}^3$
Resistance	$M_{\text{output}} = \frac{\left(W_{\text{pl.y}} - \frac{\rho \cdot A_{\text{w}}^2}{4 \cdot t_{\text{w}}}\right) \cdot f_{\text{y}}}{4 \cdot t_{\text{w}}} = 384.0 \text{kN} \cdot \text{m}$
Rediatine	$\gamma W_{\rm V}$. Rd·- $\gamma W_{\rm M0}$ = 564.0 KN· III

B) Computation by ConSteel

The computation of the design resistance of the IPE450 section is shown in Figure 21.

Fig.21 Design bending resistance with shear effect of the IPE450 section

Table 15 shows the design bending resistance of the IPE450 section with shear effect calculated by hand and by the ConSteel software. The result is accurate.

Tab.15 Cross-sectional resistance of IPE450 section for	bending with shear effect
---	---------------------------

section	bending resistance with shear effect [kNm]		
	theory ¹	ConSteel (EPS model) ²	1/2
IPE450	384,0	372,7	1,03

WE-16: Bending and Axial Force (Class 1 section)

The design bending resistance about the major axis of the **HEA450** section (see WE-11) with axial force effect is calculated by hand and by the ConSteel software.

A) Calculation by hand

Design axial forces	$N_{Ed} := -1600 \cdot kN$
Properties	A := $17800 \cdot \text{mm}^2$ (ProfileARBED)
	$W_{pl.y} := 3216000 \text{ mm}^3$
Flange data	$b_f := 300 \cdot mm$ $t_f := 21 \cdot mm$
Grade of material	S235
	$f_y := 235 \cdot \frac{N}{mm^2}$
Comressive resistance	$N_{pl.Rd} := \frac{A \cdot f_y}{\gamma_{M0}} = 4183.0 kN$
Parameters	$n := \frac{-N_{Ed}}{N_{pl.Rd}} = 0.383$ $a := \frac{(A - 2 \cdot b_f \cdot t_f)}{A} = 0.292$
Resistance	$M_{pl.y.Rd} := \frac{W_{pl.y}f_y}{\gamma_{M0}} = 755.76 \text{kN} \text{m}$
	$M_{N.y.Rd} := M_{pl.y.Rd} \frac{(1-n)}{(1-0.5a)} = 546.5 \text{kN} \cdot \text{m}$

B) Computation by ConSteel

The computation of the design resistance of the HEA450 section is shown in Figure 22.

Fig.22 Design bending resistance of the HEA450 section with axial force effect

Evaluation

Table 16 shows the bending resistance of the HEA450 section with axial force effect calculated by hand and by the ConSteel software. The result is accurate.

Tab.	16 Design	bending	resistance	of HEA450	section	with a	axial forc	e effect
					~~~~~			

section	bending re	sistance with axial force effect [l	«Nm]
	theory ¹	ConSteel (EPS model) ²	1/2
<b>HEA450</b>	546,5	546,6	1.000



# WE-17: Bending and Axial Force (Class 3 section)

The design bending resistance about the major axis of the **W7** welded hat section (see WE-07) with axial force effect is calculated by hand and by the ConSteel software.

## A) Calculation by hand

Design compressive forces
$$N_{Ed} := 5000 \cdot kN$$
Class of sectionClass 3Grade of materialS275 $f_y := 275 \cdot \frac{N}{mm^2}$ Sectional properties $A := 49500 \cdot mm^2$  $W_{el.z.min} := 3815000 \ mm^3$ Bending resistance $M_{y.Rd} := \left(1 - \frac{N_{Ed}}{A \cdot \frac{f_y}{\gamma_{M0}}}\right) \cdot W_{el.z.min} \frac{f_y}{\gamma_{M0}} = 663.8 kN \cdot m$ 

#### **B)** Computation by ConSteel

The computation of the design resistance of the W7 welded hat section is shown in Figure 23.



Fig.23 Design bending resistance of the W7 welded hat section with axial force effect

## **Evaluation**

**Table 17** shows the bending resistance of the W7 welded hat section with axial force effect calculated by hand and by the ConSteel software. The result is accurate.

Tab.17 Design bending resistance of HEA450 section with axial force effect					
section	bending resistance with axial force effect [kNm]				
	theory ¹	ConSteel (EPS model) ²	1/2		
HEA450	663,8	663,8	1,000		

Tab.17 Design bending resistance of HEA450 section with axial force effect



# WE-18: Bending and Axial Force (Class 4 section)

The design bending resistance about the major axis of the **W5** welded I section (see WE-05) with axial force effect is calculated by hand and by the ConSteel software.

## A) Calculation by hand

Section data flarge 
$$b_{f} := 240 \text{ mm}$$
  $t_{f} := 6 \text{ mm}$   
web  $h_{w} := 800 \text{ mm}$   $t_{w} := 6 \text{ mm}$   
weld  $a := 3 \text{ mm}$   
Design strength  $f_{y} := 275 \cdot \frac{N}{mn^{2}}$   $\varepsilon := \sqrt{\frac{235 \cdot \frac{N}{mn^{2}}}{f_{y}}} = 0.924$   
Compression  
Design compressive force  $N_{Ed} := 300 \cdot kN$   
Stress gradient  $\Psi := 1.0$   
Effective width of web  $c_{w} := h_{w} - 2 \cdot a = 794 \cdot mm$   
 $k_{\sigma} := 4.0$   
 $\lambda_{w} := \frac{\frac{c_{w}}{t_{w}}}{28.4\varepsilon \cdot \sqrt{k_{\sigma}}} = 2.52$   
 $\rho_{w} := \frac{\frac{c_{w}}{t_{w}}}{28.4\varepsilon \cdot \sqrt{k_{\sigma}}} = 2.52$   
 $\rho_{w} := \frac{\frac{c_{w}}{12} - \frac{c_{w}}{2}}{28.4\varepsilon \cdot \sqrt{k_{\sigma}}} = 0.362$   
 $b_{eff} : w := \rho_{w} c_{w} = 287.541 \cdot mm$   
Effective width of flange  $c_{f} := \frac{b_{f}}{2} - \frac{t_{w}}{2} - a = 114 \cdot mm$   
 $k_{\sigma} := 0.43$   
 $\lambda_{f} := \frac{\frac{c_{f}}{t_{f}}}{28.4\varepsilon \cdot \sqrt{k_{\sigma}}} = 1.104$   
 $\rho_{f} := \frac{(\lambda_{f} - 0.188)}{\lambda_{f}^{2}} = 0.752$   
 $b_{eff} := c_{f} - c_{f} = 85.698 \text{ mm}$   
Effective area  
 $A_{eff} := (b_{eff} + 2 \cdot a) \cdot t_{w} + 4 \cdot (b_{eff} + \frac{t_{w}}{2} + a) \cdot t_{f} = 3962 \cdot mn^{2}$   
Bending about major axis  
Sectional moduli (see WE-05)  
 $W_{eff :y,min} := 1416875 \text{ mn}^{3}$   
Resistance  $M_{y,N,Rd} := (1 - \frac{N_{Ed}}{A_{eff}} \cdot \frac{t_{y}}{\gamma_{M0}}) \cdot W_{eff :y,min} \cdot \frac{t_{y}}{\gamma_{M0}} = 282.4 \text{ k} \cdot m$ 



# **B)** Computation by ConSteel

The computation of the design bending resistance of the W5 welded hat section is shown in **Figure 24**.



Fig.24 Design bending resistance of the W5 welded I section with axial force effect

# Evaluation

**Table 18** shows the bending resistance of the W5 welded I section with axial force effect calculated by hand and by the ConSteel software. The hand calculation (theory¹) used the conservative interaction formula where the effective cross-sectional properties were calculated due to pure compression ( $A_{eff}$ ) and due to the pure bending moment ( $W_{eff,y,min}$ ). The ConSteel computation used the integrated normal stress distribution due to compression and bending when the effective cross-sectional properties were calculated by iterative procedure. The differences in the cross-sectional properties are considerable, respectively. However, the difference in the final result (bending resistance) is less than 4%. ConSteel software gives a more accurate result.

section	property	bending resistance with axial force effect			
		theory ¹	ConSteel (eff.EPS model) ²	1/2	
	$\mathbf{A_{eff}} \ [\mathrm{mm}^2]$	3.962	6.010	0,659	
<b>W</b> 5	$\mathbf{W}_{\text{eff.v.min}} [\text{mm}^3]$	1.416.875	1.288.458	1.099	
	M _{y.N.Rd} [kNm]	282,4	271,9	1.039	

Tab.18 Design bending resistance of the W5 welded I section with axial force effect (Class 4)


mm

# WE-19: Biaxial bending with compression force effect (Class 1 section)

The design bending resistance about the major axis of the HEB400 hot-rolled H section with axial force effect is calculated by hand and by the ConSteel software.

#### A) Calculation by hand

Properties (Profil ARBED)

Class of section	Class 1	
Dimensions	$b := 300 \cdot mm$	$t_f := 24 \cdot$
Sectional modulus	$A := 19780 \cdot mm^2$	
	$W_{pl.y} := 3232000$	mm ³
	W _{pl.z} := 1104000	mm ³
Design strength	$f_y := 235 \cdot \frac{N}{mm^2}$	

**Design forces** 

Compression  $N_{Ed} := 3000 \cdot kN$ Bending about minor axis  $M_{z,Ed} := 100 \cdot kN \cdot m$ 

Pure resistances

resistances	Δ.f	
Compression	$N_{pl.Rd} := \frac{\gamma Y_y}{\gamma M0} = 4648.$	3 kN
Parameters	$n := \frac{N_{Ed}}{N_{pl.Rd}} = 0.645$	$a := \frac{A - 2 \cdot b \cdot t_{f}}{A} = 0.272$

Bending about major axis 
$$M_{pl.y.Rd} := \frac{W_{pl.y}f_y}{\gamma_{M0}} = 759.52 kN \cdot m$$

$$M_{N.pl.y.Rd} = M_{pl.y.Rd} \frac{1-n}{1-0.5a} = 311.72 \text{lkN} \cdot \text{m}$$

Bending about minor axis 
$$M_{pl.z.Rd} := \frac{W_{pl.z}f_y}{\gamma_{M0}} = 259.44 \text{kN} \cdot \text{m}$$
  
 $M_{N.pl.z.Rd} := M_{pl.z.Rd} \left[ 1 - \left(\frac{n-a}{1-a}\right)^2 \right] = 191.186 \text{kN} \cdot \text{m}$ 

#### Bending resistance about major axis due to biaxial bending with axial force

Parameters 
$$\alpha := 2$$
  $\beta := 5 \cdot n = 3.227$ 

$$M_{y.Rd} := M_{N.pl.y.Rd} \sqrt{1 - \left(\frac{M_{z.Ed}}{M_{N.pl.z.Rd}}\right)^{\beta}} = 291.8 \text{kN} \cdot \text{m}$$



The computation of the design bending resistance of the HEB400 hot-rolled H section is shown in **Figure 25**.



Fig.25 Design bending resistance of the HEB400 section with axial force effect

# Evaluation

**Table 19** shows the bending resistance of the HEB400 hot-rolled H section with axial force effect calculated by hand and by the ConSteel software. The result is accurate.

section	resistance*	bending resistance with axial force effect					
	[kNm]	theory ¹	ConSteel ²	1/2			
<b>HEB400</b>	M _{N.pl.y.Rd}	311,7	311,6	1,000			
	M _{N.pl.z.Rd}	191,2	187,0	1.022			
	$\mathbf{M}_{\mathbf{y}.\mathbf{Rd}}$	291,8	290,2	1.005			

Tab.19 Design biaxial bending resistance of the HEB400 section with axial force effect

*)  $N_{Ed}$ =-3000 kN ;  $M_{z.Ed}$ =100 kNm



# 2. Analysis

# 2.1 Theoretical background

The ConSteel software uses the 14 degrees of freedom general thin-walled beam-column finite element (referred as **csBeam7**) published by Rajasekaran in the following textbook:

CHEN, W.F. ATSUTA, T.: Theory of Beam-Columns: Space behavior and design, Vol.2 McGraw-Hill, 1977, pp. 539-564

Later more researchers used and developed this element, for example:

PAPP, F.: Computer aided design of steel beam-column structures, Doctoral thesis, Budapest University of Technology & Heriot-Watt University of Edinburgh, 1994-1996

The general beam-column finite element takes the effect of warping into consideration, therefore it is reasonable to use it in both of the geometrically nonlinear stress analysis and the elastic stability analysis of spatial steel structures.

The ConSteel software uses a triangular isoparametric thick plane shell finite element with 3 nodes (referred as **csShell3**). The application and the efficiency of this element is discussed in the following papers:

- HRABOK, M.M., HRUDEY, T.M. "A review and catalogue of plate bending finite elements" Computers and Structures. Vol.19. pp.479-495. 1984.
- HENRY, T.Y., SAIGAL, S., MASUD, A., KAPANIA, R.K., "A survey of recent finite elements" International Journal of Numerical Methods in Engineering. Vol. 47. pp.101-127. 2000.

This element may be integrated with the general beam-column finite element sufficiently in a mixed beam-column and plated steel structural model.

# 2.2 Stress analysis

The stress analysis (computation of deflections, internal forces and reactions) of simple structural members are verified by

- Geometrically linear (first order) theory
- Geometrically non-linear (second order) theory



# 2.2.1 Geometrically linear (first order) theory

The analysis of simple structural members using the ConSteel software (based on the **csBeam7** and the **csShell3** finite element) are checked in the following **Worked Examples** (**WE-20** to **WE-23**).

# WE-20 Compressed member

Figure 26 shows a compressed member. The moving of the end of the member and the compressive stress are calculated by hand and by the ConSteel software using both of the csBeam7 and the csSheel3 finite element models.



Fig.26 Stress analysis of compressed member

#### 4

#### A) Calculation by hand

Sectional area	$A := 11250 \cdot mm^2$
Grade of material	S235
	$E := 210000 \cdot \frac{N}{mm^2}$
Length of member	$L := 4000 \cdot mm$
Compressive force	$F_x := 1000 \cdot kN$
Compressive stress	$\sigma_{x} := \frac{F_{x}}{A} = 88.889 \frac{N}{mm^{2}}$
End moving	$e_x := \sigma_x \cdot \frac{L}{E} = 1.693 \cdot mm$



• Beam-column FE model (csBeam7)



Fig.27 Axial deflection of the compressed member

Shell FE model (csShell3) Dx = -1.7 mm Dx = -1.7 mm 🛆 X [mm] Y [mm] Z [mm] Rx[degree] Ry[degree] Ra[degree] <u>د</u> -1,717 0.000 0.005 2 -0.008 0.001 -0.006 0,000 0.008 -0.006 3 -1,717 -0,000 -0,006

Fig.28 Axial deflection of the compressed member

# Evaluation

**Table 20** shows the axial deflection of the free end of the simply supported compressed member calculated by hand and computed by the ConSteel software using both the **csBeam7** (see **Figure 27**) and the **csShell3** (see **Figure 28**) models. The results are accurate.

Tab.20	Stress	analysis	of com	pressed	member
--------	--------	----------	--------	---------	--------

section	property	theory ¹	ConSteel			
			csBeam7 ²	1/2	csShell3 ³	1/3
HEA300	e _x [mm]	1,693	1,684	1,005	1,717	0,986
L=4000mm						

#### Notes

In order to compare the results the compressive load on the **csShell3** model was modified by the ratio of the cross-sectional areas computed on the plated structural model and given by the profilARBED catalogue.



# WE-21 Bended member

**Figure 29** shows a plated structural member which is loaded by uniformly distributed load. The vertical displacement of the middle cross-section and the maximum bending moment of the member are calculated by hand and by the ConSteel software using both of the **csBeam7** and the **csSheel3** finite element models.



*Fig.29 Plated structural member loaded by uniformly distributed load in the vertical plane (welded I section with 200-12 flange and 400-8 web)* 

# A) Calculation by hand

Section:	welded symme	etric I section	
	flange	$b := 200 \cdot mm$	$t_f := 12 \cdot mm$
	web	$h_w := 400 \cdot mm$	$t_w := 8 \cdot mm$
Elastic modu	lus	$E := 210000 \cdot \frac{N}{mm^2}$	
Length of me	mber	$L := 8000 \cdot mm$	
Load		$p := 30 \cdot \frac{kN}{m}$	
Inertia mome	ent	$I_{\mathbf{y}} := 2 \cdot \mathbf{b} \cdot \mathbf{t}_{\mathbf{f}} \cdot \left(\frac{\mathbf{h}_{\mathbf{W}}}{2} + \right)$	$\left(\frac{t_{f}}{2}\right)^{2} + t_{W} \cdot \frac{h_{W}^{3}}{12} = 246359467 \text{ mm}^{4}$
Maximum de	flection	$\mathbf{e}_{z.\text{max}} \coloneqq \frac{5}{384} \cdot \frac{\mathbf{p} \cdot \mathbf{L}^4}{\mathbf{E} \cdot \mathbf{I}_y}$	= 30.927· mm
Maximum be	nding moment	$M_{y.max} := \frac{p \cdot L^2}{8} = 2$	240 kN · m



• Beam-column FE model (csBeam7)

Figure 30 shows the deflections of the member with the numerical value of the maximum deflection. Figure 31 shows the bending diagram with the maximum bending moment at the middle cross-section (self weight is neglected).



**Fig.30** Deflections of the bended member (with n=16 FE)



Fig.31 Bending moment diagram of the bended member



• Shell FE model (csShell3)

Figure 32 shows the deflections of the member with the numerical value of the maximum deflection (self weight is neglected).



**Fig.32** Deflections of the bended member (with  $\delta$ =50mm FE size)

## Evaluation

**Table 21** shows the maximum value of the vertical deflections calculated by hand and computed by the ConSteel software using both the **csBeam7** and the **csShell3** models. The results are accurate.

			ConSteel					
section	property	theory ¹		csBeam7 ²	2	C	sShell3 ³	
			n	result	1/2	δ	result	1/3
			4	29,373	1,053	100	31,200	0,991
	e _{z.max} [mm]	30.927	6*	30,232	1,023	50	31,376	0,986
Welded I			8	30,533	1,013	25	31,427	0,984
			16	30,823	1,003			-
200-10;400-8			4	240				
	M _{y.max} [kNm]	240	6*	240	1.000			
			8	240	] ,			
			16	240	]			

#### Tab.21 Stress analysis of bended member

*) given by the automatic mesh generation (default)

#### Notes

In the table *n* denotes the number of the finite element in the **csBeam7** model,  $\delta$  denotes the size of the finite elements in [mm] in the **csShell3** model.

The distributed load on the **csBeam7** model is concentrated into the FE nodes, therefore the deflections depend on the number of the finite elements.

The **csShell3** model involves the effect of the shear deformation, therefore it leads greater deflections.



# WE-22 Member in torsion (concentrated twist moment)

**Figure 33** shows a simple fork supported structural member which is loaded by a concentrated twist moment at the middle cross-section. The member was analysed by hand and by the ConSteel software using both of the **csBeam7** and the **csSheel3** finite element models.



Fig.33 Simple fork supported structural member loaded by concentrated twist moment at the middle cross-section

#### A) Calculation by hand

Section:	Welded s	ymmetric I sectio	on
	flange	$b := 300 \cdot mm$	$t_f := 16 \cdot mm$
	web	$h_w := 300 \cdot mm$	$t_w := 10 \cdot mm$
Sectional	properties (	by GSS model)	$I_t := \frac{1}{3} \cdot \left( 2 \cdot b \cdot t_f^3 + h_w \cdot t_w^3 \right) = 919200 \cdot mm^4$
			$h_s := h_w + t_f = 316 \cdot mm$
			$I_z := 2 \cdot t_f \cdot \frac{b^3}{12} = 7200000 \text{ mm}^4$
			$I_{\omega} := I_{z} \cdot \frac{h_{s}^{2}}{4} = 1797408000000  \text{mm}^{6}$
			$\mathbf{h} := \mathbf{h}_{\mathbf{W}} + 2 \cdot \mathbf{t}_{\mathbf{f}} = 332 \cdot \mathbf{m} \mathbf{m}$
Elasticmo	odulus		E:=210000 $\cdot \frac{N}{mm^2}$ G:= $\frac{E}{2 \cdot (1 + 0.3)} = 80769 \cdot \frac{N}{mm^2}$
Paramete	r		$\alpha := \sqrt{\frac{GI_t}{EI_{\omega}}} = 0.444\frac{1}{m}$
Concentra	ited torsiona	al moment	$M_{x} := 25 \cdot kN \cdot m$
Memberl	ength		$L := 4000 \cdot mm$
Cross-secti	ion position		$L_2 := \frac{L}{2} = 2000 \cdot mm$
Paramete	rs		$z := \frac{L}{2} = 2000 \cdot mm$
			$z_0 := 0 \cdot mm$
Rotation*		$\phi_{\max} := \frac{M_x}{\alpha^2 \cdot E \cdot I_{\alpha}}$	$-\left(\frac{L_2}{L} \cdot z - \frac{\sinh(\alpha \cdot L_2)}{\alpha \cdot \sinh(\alpha \cdot L)} \cdot \sinh(\alpha \cdot z)\right) = 0.067 \cdot \text{rad}$
		$\varphi_{\text{max.deg}} := \varphi_{\text{max.deg}}$	$hax = 3.852 \cdot deg$



# **VERIFICATION MANUAL**

$$\begin{array}{ll} \mbox{Bimoment}^{*} & \mbox{B} := M_{X} \cdot \frac{\sinh(\alpha \cdot L_{2})}{\alpha \cdot \sinh(\alpha \cdot L)} \cdot \sinh(\alpha \cdot z) = 20.009 k N \cdot m^{2} \\ \mbox{Torsinal moment}^{*} & \mbox{M}_{t} := M_{X} \cdot \left( \frac{L_{2}}{L} - \frac{\sinh(\alpha \cdot L_{2})}{\sinh(\alpha \cdot L)} \cdot \cosh(\alpha \cdot z_{0}) \right) = 3.696 k N \cdot m \\ & \mbox{M}_{\omega} := M_{X} \frac{\sinh(\alpha \cdot L_{2})}{\sinh(\alpha \cdot L)} \cdot \cosh(\alpha \cdot z_{0}) = 8.804 k N \cdot m \\ \mbox{Check equilibrium} & \mbox{M}_{X.int} := M_{t} + M_{\omega} = 12.5 k N \cdot m \\ \mbox{Warping stress} & \mbox{e}_{f} := \frac{h}{2} - \frac{t_{f}}{2} = 158 \cdot mm \\ & \mbox{\omega}_{max} := \mbox{e}_{f} \cdot \frac{b}{2} = 23700 \cdot mm^{2} \\ & \mbox{\sigma}_{X.max} := \frac{B}{I_{\omega}} \cdot \omega_{max} = 263.8 \cdot \frac{N}{mm^{2}} \end{array}$$

*) Csellár, Halász, Réti: Thin-walled steel structures, Muszaki Könvkiadó 1965, Budapest, Hungary, pp. 129-131 (in hungarian)

#### **B)** Computation by ConSteel

• Beam-column FE model (csBeam7)

Figure 34 shows the deflections of the member with the numerical value of the maximum rotation (self weight is neglected). Figure 35 shows the bimoment diagram with the maximum bimoment at the middle cross-section. Figure 36 shows the warping normal stress in the middle cross-section.



Fig.34 Rotation of the member due to concentrated twist moment





Fig.35 Bimoment of the member due to concentrated twist moment



Fig.36 Warping normal stress in the middle cross-section

• Shell FE model (csShell3)

Figure 37 shows the rotation of the member with the numerical value of the maximum rotation (self weight is neglected). Figure 38 shows the axial stress distribution in the middle cross-section.



Fig.37 Maximum rotation of the middle cross-section





Fig.38 Axial stress distribution in the middle cross-section (with 25mm FE)

# **Evaluation**

Table 22 shows the value of the rotation, bimoment and the axial stress of the middle cross-section calculated by hand and computed by the ConSteel software using both the csBeam7 and the csShell3 models. The results are accurate.

				ConSteel					
section	property	theory ¹		csBeam7	2	с	sShell3 ³		
			n	result	1/2	δ	result	1/3	
			2	3,852	1,000	50	4,021	0,958	
	R _{x.max} [deg]	3,852	4	3,854	0,999	25	3,928	0,981	
			6*	3,854	0,999	12,5	3,922	0,982	
Welded I			16	3,854	0,999				
f: 300-16	B _{max} [kNm ² ]	20,00	2	20,00	1,000				
w: 300-10			4	20,00	1,000				
			6*	20,00 1,00	1,000				
			16	19,99	1,001				
			2	263,7	1,000	50	213,8	1,234	
	$\sigma_{\omega.max}^{**}$	263,8	4	263,7	1,000	25	242,6	1,061	
	$[N/mm^2]$		6*	263,7	1,000	12,5	261,4	1,009	
			16	263,7	1,000				

Tab.22	Stress	analysis	of	bended	member
140122		analysis	<b>U</b> 1	Senaca	memori

*) given by automatic mesh generation (default)**) in middle line of the flange

#### Notes

In the table *n* denotes the number of finite element in the **csBeam7** model,  $\delta$  denotes the size of the finite elements in [mm] in the csShell3 model.



# WE-23 Member in torsion (torsion by transverse concentrated load on monosymmetric I section)

**Figure 39** shows a simple fork supported member with mono-symmetric welded I section which is loaded by a concentrated transverse force in the centroid of the middle cross-section. The member was analysed by hand and by the ConSteel software using both of the **csBeam7** and the **csSheel3** finite element models.



*Fig.39* Simple fork supported member with mono-symmetric welded I section loaded by concentrated transverse force in the centroid

#### A) Calculation by hand

Section:	Welded monsyr top flange	mmetric I section $b_1 := 200 \cdot mm$	$t_{fl} := 12 \cdot mm$		
	web	$h_{w} := 400 \cdot mm$	$t_w := 8 \cdot mm$		
	bottom flange	$b_2 := 100 \cdot mm$	$t_{f2} := 12 \cdot mm$		
Sectional	properties	$I_{z1} := t_{f1} \cdot \frac{b_1^3}{12} = 800$	00000 mm ⁴	$I_{z2} := t_{f2} \cdot \frac{b_2^3}{12}$	$= 1000000 \text{ mm}^4$
		$I_z := I_{z1} + I_{z2} = 900$	0000 mm ⁴		
		$I_t := \frac{1}{3} \cdot \left( b_1 \cdot t_{fl}^3 + b_{fl} \right)^3 + b_{fl} + b_{fl}$	$2 \cdot t_{f2}^{3} + h_{w} \cdot t_{w}^{3}$	$= 241067 \cdot \text{mm}$	4 n
		$\beta_{f} := \frac{I_{z1}}{I_{z1} + I_{z2}}$	- = 0.889 2	$\mathbf{h}_{\mathbf{S}} := \mathbf{h}_{\mathbf{W}} + \frac{\mathbf{t}_{\mathbf{fl}}}{2}$	$+ \frac{t_{f2}}{2} = 412 \cdot mm$
		$I_{\omega} := \beta_f \cdot (1 - \beta_f) \cdot I_z$	$h_s^2 = 1.5088 \times$	$10^{11} \cdot \text{mm}^6$	
		$Z_{S} := 248.4 \cdot n$	nm (by GSS	model of ConSteel)	
		z _D := 123.4 · n	nm (by GSS)	model of ConSteel)	
Elastic mo	odulus	$E := 210000 \cdot \frac{N}{mm^2}$	$\mathbf{G} := \frac{\mathbf{I}}{2 \cdot (1 - \mathbf{I})}$	$\frac{E}{+0.3} = 80769$	$\frac{N}{mm^2}$
Paramete	r	$\alpha := \sqrt{\frac{G I_t}{E I_{\omega}}} = 0.784$	<u>1</u> m		
Memberl	ength	$L := 6000 \cdot mm$			
Transvers	e force	$F_y := 10 \cdot kN$			



# VERIFICATION MANUAL

Torsional moment	$M_x := F_y \cdot z_D = 1.234 kN \cdot m$
Cross-section position	$L_2 := \frac{L}{2} = 3000 \cdot mm$
	$z := \frac{L}{2} = 3000 \cdot mm$ $z_0 := 0 \cdot mm$
Rotation*	$\varphi_{\max} := \frac{M_x}{\alpha^2 \cdot E \cdot I_{\omega}} \cdot \left( \frac{L_2}{L} \cdot z - \frac{\sinh(\alpha \cdot L_2)}{\alpha \cdot \sinh(\alpha \cdot L)} \cdot \sinh(\alpha \cdot z) \right) = 3.172 \cdot \deg$
Bimoment*	$B := M_{x} \cdot \frac{\sinh(\alpha \cdot L_{2})}{\alpha \cdot \sinh(\alpha \cdot L)} \cdot \sinh(\alpha \cdot z) = 0.773 \text{ kN} \cdot \text{m}^{2}$
Torsinal moment*	$M_{t} := M_{x} \cdot \left( \frac{L_{2}}{L} - \frac{\sinh(\alpha \cdot L_{2})}{\sinh(\alpha \cdot L)} \cdot \cosh(\alpha \cdot z_{0}) \right) = 0.501 \text{ kN} \cdot \text{m}$
	$M_{\omega} := M_{x} \frac{\sinh(\alpha \cdot L_{2})}{\sinh(\alpha \cdot L)} \cdot \cosh(\alpha \cdot z_{0}) = 0.116 \text{kN} \cdot \text{m}$
Checkequilibrium	$M_{x.int} := M_t + M_{co} = 0.617 \text{kN} \cdot \text{m}$
Warping stress	$\omega_2 := 18311 \cdot mm^2 \qquad \text{(by GSS model of ConSteel)}$
	$\sigma_{\omega,2} := \frac{B}{I_{\omega}} \cdot \omega_2 = 93.8 \cdot \frac{N}{mm^2}$
Bending moment	$M_z := F_y \cdot \frac{L}{4} = 15 \text{ kN} \cdot \text{m}$
Bending stress	$\sigma_{MZ2} := \frac{M_Z}{I_Z} \cdot \frac{b_2}{2} = 83.33 \cdot \frac{N}{mm^2}$
Axial stress in bottom flang	le $\sigma_{x2} := \sigma_{\omega.2} + \sigma_{MZ2} = 177.14 \frac{N}{mm^2}$

*) Csellár, Halász, Réti: Thin-walled steel structures, Muszaki Könvkiadó 1965, Budapest, Hungary, pp. 129-131 (in Hungarian)



• Beam-column FE model (csBeam7)

Figure 40 shows the deformated member with the numerical value of the maximum rotation (self weight is neglected). Figure 41 shows the bimoment diagram with the maximum bimoment at the middle cross-section. Figure 42 shows the warping normal stress in the middle cross-section.



**Fig.40** Rotation of the member due to concentrated transverse force in the centroid of the middle cross-section (n=16)



*Fig.41* Bimoment of the member (n=16)



*Fig.42* Warping normal stress in the middle cross-section (n=16)



# Evaluation

**Table 23** shows the value of the rotation, bimoment and the axial stress of the middle cross-section calculated by hand and computed by the ConSteel software using both the **csBeam7** and the **csShell3** models. The results are accurate.

			ConSteel						
section	property	theory ¹		csBeam7 ²	2	c	sShell3 ³		
			n	result	1/2	δ	result	1/3	
			2	3,122	1,016	50	2,996	1,059	
	R _{x.max} [deg]	3,172	4	3,145	1,009	25	3,133	1,013	
			8*	3,148	1,007	12,5	3,173	1,000	
Welded I			16	3,148	1,007				
200-12	B _{max} [kNm ² ]	0,773	2	0,779	0,992				
400-8			4	0,771	1,003				
100-12			8*	0,770	1,004				
			16	0,770	1,004				
			2	177,9	0,996	50	165,3	1,072	
	$\sigma_{.max}^{**}$ [N/mm ² ]	177,1	4	176,9	1,001	25	173,4	1,021	
			8*	176,8	1,001	12,5	176,1	1,006	
			16	176,8	1,001				

#### Tab.23 Stress analysis of member in torsion

*) given by the automatic mesh generation (default)

**) in the middle plane of the flange

#### Notes

In the Table 23 *n* denotes the number of the finite elements of the **csBeam7** model,  $\delta$  denotes the size of the shell finite elements in [mm] in the **csShell3** model.



# 2.2.2 Geometrically nonlinear (second order) theory

The geometrically nonlinear analysis of simple structural members using the ConSteel software (based on the **csBeam7** and the **csShell3** finite element) are checked in the following **Worked Examples** (WE-24 to WE-25).

# WE-24 Member subjected to bending and compression

**Figure 43** shows a simple fork supported member with IPE360 section subjected to axial force and bending about the minor axis due to lateral distributed force. The deflection and the maximum compressive stress of the member are calculated by hand and by the ConSteel software using the **csBeam7** model.



Fig.43 Simple fork supported member with IPE360 section subjected to transverse load and compressive force



# A) Calculation by hand

Section:IPE 360	
Sectional properties (ProfilARBED)	$A := 7273 \cdot mm^2$
	$I_z := 10430000 \text{ mm}^4$
Elastic modulus	$E = 210000 \cdot \frac{N}{mm^2}$
Length of member	L := 8000 · mm
Distributed load intensity	$p := 1 \cdot \frac{kN}{m}$
Compressive force	$F_x := 200 \cdot kN$
Crirical foce	$F_{cr.x} := \frac{\pi^2 \cdot E \cdot I_z}{L_z^2} = 337.8 \cdot kN$
Bending moment by first order theory	$M_{z1} := \frac{p \cdot L^2}{8} = 8 kN \cdot m$
Moment amplifier factor	$\eta \coloneqq \frac{1}{1 - \frac{F_x}{F_{cr.x}}} = 2.452$
Bending moment by second order theory	$M_{z2} := \eta \cdot M_{z1} = 19.61 \text{kN} \cdot \text{m}$
Maximum compressive stress	$y_{max} := 85 \cdot mm$
	$\sigma_{c.max} := \frac{F_x}{A} + \frac{M_{z2}}{I_z} \cdot y_{max} = 187.3 \cdot \frac{N}{mm^2}$

# **B)** Computation by ConSteel

• Beam-column FE model (csBeam7)

Figure 44 shows the second order bending moment diagram of the member which was computed by the ConSteel software using the **csBeam7** finite element model.



*Fig.44* Bending moment diagram of the member (n=16)



# Evaluation

**Table 24** shows the second order bending moment and the maximum axial compressive stress value of the middle cross-section calculated by hand and computed by the ConSteel software using the **csBeam7** model. The results are accurate.

section	property	theory ¹	с	sBeam7 ²	
			n	result	1/2
			2	17,40	1,127
	M _{z.max} [kNm]	19,61	4	19,33	1,015
			6*	19,67	0,997
IPE360			16	19,90	0,985
II E300			2	169,7	1,104
	$\sigma_{c.max}$ [N/mm ² ]	187,3	4	185,5	1,010
			6*	188,3	0,995
			16	190.2	0,985

Tab.24 Second	l order stress	analysis of	member in	bending and	compression
I doil i become		analysis of	memori m	somaning and	compression

*) given by the automatic mesh generation (default)

#### Notes

In the Table 23 *n* denotes the number of the finite elements of the **csBeam7** model.

# WE-25 Member subjected to biaxial bending and compression

**Figure 45** shows a simple fork supported member with IPE360 equivalent welded section (flange: 170-12,7; web: 347-8) subjected to biaxial bending about the minor axis due to concentrated end moments and to compressive force. Deflections of middle cross-section of the member are calculated by hand and by the ConSteel software using both of **csBeam7** model and **csShell3** model.



Fig.45 Simple fork supported member with IPE360 section subjected to biaxial bending and compression



# **VERIFICATION MANUAL**

# A) Calculation by hand (using approximated method)

#### Section: IPE360 equivalent welded I section

Sectional properties (by EPS model)	$A := 6995 \cdot mm^2$					
	$I_y := 155238000 \text{ mm}^4$	$I_z := 10413000 \text{ mm}^4$				
	$I_t := 291855 \cdot mm^4$	$I_{\omega} := 313000000000 \mathrm{mm}^6$				
	$r_0 := \sqrt{\frac{I_y}{A} + \frac{I_z}{A}} = 153.887 \text{mm}$					
Elastic modulus	$E = 210000 \frac{N}{mm^2}$	$G := \frac{E}{2 \cdot (1 + 0.3)} = 80769 \frac{N}{mm}$				
Length of member	$L := 8000 \cdot mm$					
Compressive force	$\mathbf{P} := 100 \cdot \mathbf{kN}$					
End moments	$M_y := 45 \cdot kN \cdot m$	$M_{z} := 7.5 \cdot kN \cdot m$				
Critical axial forces	$P_{\text{cr.}y} := \frac{\pi \cdot E \cdot I_y}{L^2} = 5027 \cdot \text{kN}$ $P_{\text{cr.}z} := \frac{\pi^2 \cdot E \cdot I_z}{L^2} = 337.2 \cdot \text{kN}$					
	$P_{cr.\omega} := \frac{1}{r_0^2} \cdot \left( \frac{\pi^2 \cdot E \cdot I_{\omega}}{L^2} + G \cdot I_t \right) = 1423.5 \text{ kN}$					

Displacements*

$$C := \frac{\pi^{2}}{8} \cdot \frac{M_{y} \cdot M_{z}}{P_{cr.y} \cdot P_{cr.z}} \cdot P \cdot \frac{\frac{P_{cr.y}}{P_{cr.z} - P} - \frac{P_{cr.z}}{P_{cr.y} - P} - \frac{4}{\pi} \cdot \frac{P_{cr.z} - P_{cr.y}}{P}}{\frac{P_{cr.z} - P_{cr.y}}{P_{cr.y} - P}} = -0.087$$
$$u_{max} := -\frac{1}{P_{cr.z} - P} \cdot \left(\frac{\pi^{2}}{8} \cdot M_{z} - C \cdot M_{y}\right) = -55.53mm$$
$$v_{max} := \frac{1}{P_{cr.y} - P} \cdot \left(\frac{\pi^{2}}{8} \cdot M_{y} + C \cdot M_{x}\right) = 11.25mm$$

 $\phi_{max}$ := C = -4.99 ldeg

*) Chen, W. and Atsuta, T.: Theory of Beam-Columns, Vol. 2: Space behavior and design, McGRAW-HILL 1977, p. 192



• Beam-column FE model (csBeam7)

Figure 46 shows the second order deflection of the member which was computed by the ConSteel software using the csBeam7 finite element model.



*Fig.46* Deformation of the member by csBeam7 FE model (n=16)

• Shell FE model (csShell3)

Figure 47 shows the second order deflection of the member which was computed by the ConSteel software using the **csShell3** finite element model.



*Fig.47* Deformation of the member by csShell3 FE model ( $\delta$ =43mm)



# Evaluation

**Table 25** shows the second order bending moment and the maximum axial compressive stress value of the middle cross-section calculated by approximated theory and computed by the ConSteel software using the **csBeam7** and **csShell3** model. The accuracy of the approximated hand calculation is a bit pure, but the ConSteel results of **csBeam7** model comparing with the **csShell3** model are accurate.

			ConSteel				
section	displacement	theory	csBeam7			csShell3	
		(approximation)	n	result	δ	result	
			2	53,00	43	51,17	
	e _{y.max} [mm]	55,53	4	53,38	25	53,03	
			6*	53,46	csBea	n(n = 16)	
<b>IPE360</b> equivalent			16	53,50	csShe	$\frac{1}{2} = 1,009$	
	e _{z.max} [mm]	11,25	2	11,10	43	10,81	
welded I section			4	11,10	25	10,83	
347-8			6*	11,10	csBec	m(n = 16)	
547-6			16	11,10	csShe	$\frac{1}{ll(\delta = 25)} = 1,025$	
			2	4,172	43	4,287	
	$\varphi_{.max}[deg]$	4,991	4	4,216	25	4,433	
			6*	4,229	csBea	m(n = 16)	
			16	4,239	csShe	$\frac{1}{ll(\delta = 25)} = 0,956$	

Tah 2	25 Second	order stress	analysis of <b>n</b>	ember in l	hending and	compression
1 a. D. 2	15 Second	oruer stress	analy 515 01 11	lember m	Jenuing anu	compression

*) given by the automatic mesh generation (default)

#### Notes

In the **Table 25 n** denotes the number of the finite elements of the **csBeam7** model,  $\delta$  denotes the maximum size of the shell finite elements of the **csShell3** model in [mm].



# 2.3 Stability analysis

The stability analysis of simple structural members using the ConSteel software based on both of the **csBeam7** and optionally the **csShell3** finite element models are checked in the following **Worked Examples** (**WE-26** to **WE-33**).

# WE-26 Lateral torsional buckling (double symmetric section & constant bending moment)

**Figure 48** shows a simple fork supported member with welded section (flange: 200-12; web: 400-8) subjected to bending about the major axis due to concentrated end moments. Critical moment of the member is calculated by hand and by the ConSteel software using the **csBeam7** model.



Fig.48 Simple fork supported member subjected to bending about the major axis (LTB)

#### A) Calculation by hand

Section: welded symmetric I section flange  $b := 200 \cdot mm$  $t_f := 12 \cdot mm$ web  $h_w := 400 \cdot mm$   $t_w := 8 \cdot mm$  $I_z := 2 \cdot t_f \cdot \frac{b^3}{12} = 16000000 \text{ mm}^4$ Sectional properties  $I_t := \frac{1}{3} \cdot \left( 2 \cdot b \cdot t_f^3 + h_w \cdot t_w^3 \right) = 298667 \cdot mm^4$  $I_{\omega} := \frac{t_{f} \cdot b^{3}}{24} \cdot (h_{w} + t_{f})^{2} = 678976000000 \text{ mm}^{6}$ E := 210000  $\cdot \frac{N}{mm^2}$  G :=  $\frac{E}{2 \cdot (1 + 0.3)} = 80769 \cdot \frac{N}{mm^2}$ Elastic modulus Member length  $L := 6000 \cdot mm$  $\mathbf{M}_{cr} := \frac{\pi^2 \cdot \mathbf{E} \cdot \mathbf{I}_z}{\mathbf{L}^2} \cdot \left[ \frac{\mathbf{I}_{\omega}}{\mathbf{I}_z} + \frac{\mathbf{L}^2 \cdot \mathbf{G} \cdot \mathbf{I}_t}{\pi^2 \cdot \mathbf{E} \cdot \mathbf{I}_z} \right] = 241.31 \text{kN} \cdot \text{m}$ Critical moment



• Beam-column FE model (csBeam7)

Figure 49 shows the member subjected to lateral torsional buckling which was computed by the ConSteel software using the **csBeam7** finite element model.



*Fig.49 LTB of simple supported structural member* (*n*=16)

# Evaluation

**Table 26** shows the critical moment for lateral torsional buckling of the member which calculated by hand and computed by the ConSteel software using the **csBeam7** model. The result is accurate.

		1		csBeam7 ²	2
section	critical force	theory ¹	n	result	1/2
			2	243,24	0,992
Welded I	M _{cr} [kNm]	241,31	4	241,87	0,998
200-12;400-8			6*	241,79	0,998
			16	241,77	0,998

Tab.57 Stability analysis of member on compression (L=4000mm)

*) given by the automatic mesh generation (default)

#### Note

In the Table 57 n denotes the number of the finite elements of the csBeam7 model.



# WE-27 Lateral torsional buckling (double symmetric section & triangular bending moment distribution)

**Figure 50** shows a simple fork supported member with welded section (flange: 200-12; web: 400-8) subjected to transverse force at middle cross section in the main plane of the member. The critical force is calculated by hand and by the ConSteel software using **csBeam7** model.



Fig.50 Simple fork supported member subjected to transverse force (LTB)

# A) Calculation by hand



• Beam-column FE model (csBeam7)

Figure 51 shows the LTB of the member subjected to transverse force. The critical force is computed by the ConSteel software using **csBeam7** finite element model.



*Fig.51* LTB of simple supported structural member subjected to transverse force (n=16)

#### Evaluation

**Table 27** shows the critical force for lateral torsional buckling of the member which calculated by hand and computed by the ConSteel software using **csBeam7** model. The result is accurate.

		1		csBeam7 ²	2
section	critical force	theory ¹	n	result	1/2
			2	220,9	0,994
Welded I	P _{cr} [kN]	219,6	4	219,9	0,999
200-12;400-8			6*	219,7	1,000
			16	219,7	1,000

 Tab.27 Stability analysis of member on compression (L=4000mm)

*) given by the automatic mesh generation (default)

#### Note

In the Table 27 n denotes the number of the finite elements of the csBeam7 model.



# WE-28 Lateral torsional buckling (mono-symmetric section & constant moment)

Figure 52 shows a simple fork supported member with welded mono-symmetric I section (flange: 200-12 and 100-12; web: 400-8) subjected to equal end moments. The critical moment is calculated by hand and by the ConSteel software using csBeam7 and csShell3 models.



Fig.52 Simple fork supported member with mono-symmetric I section subjected to equal end moments (LTB)



# VERIFICATION MANUAL

# A) Calculation by hand

Section: welded mono-symmetric I section

top flange	$b_1 := 200 \cdot mm$ $t_{fl} := 12 \cdot mm$
web	$\mathbf{h}_{\mathbf{W}} := 400 \cdot \mathbf{mm}$ $\mathbf{t}_{\mathbf{W}} := 8 \cdot \mathbf{mm}$
bottom flange	$b_2 := 100 \cdot mm$ $t_{f2} := 12 \cdot mm$
Sectional properties	$\begin{split} & Z_{S} := 248.4 \cdot \text{mm} & (\text{by GSS model of} \\ & z_{D} := 123.4 \cdot \text{mm} & (\text{by GSS model of} \\ & (\text{by GSS model of} \\ & \text{ConSteel}) \\ & I_{z1} := t_{f1} \cdot \frac{b_{1}^{-3}}{12} = 8000000 \text{ mm}^{4} & I_{z2} := t_{f2} \cdot \frac{b_{2}^{-3}}{12} = 1000000 \text{ mm}^{4} \end{split}$
	$I_z := I_{z1} + I_{z2} = 9000000 \text{ mm}^4$
	$I_{y} := 186493000 \text{ mm}^{4} \text{ (by GSS model of ConSteel)} I_{t} := \frac{1}{3} \cdot \left( b_{1} \cdot t_{f1}^{3} + b_{2} \cdot t_{f2}^{3} + h_{w} \cdot t_{w}^{3} \right) = 241067 \cdot \text{ mm}^{4}$
	$\beta_{\rm f} := \frac{{\rm I}_{\rm z1}}{{\rm I}_{\rm z1} + {\rm I}_{\rm z2}} = 0.889$
	$h_s := h_w + \frac{t_{f1}}{2} + \frac{t_{f2}}{2} = 412 \cdot mm$
	$I_{\omega} := \beta_{f} \cdot (1 - \beta_{f}) \cdot I_{z} \cdot h_{s}^{2} = 150883555556 \text{ mm}^{6}$
	$e := h_W + t_{f2} + \frac{t_{f1}}{2} - Z_S = 169.6 \text{ mm}$
	$A_1 := b_1 \cdot t_{f1} = 2400 \cdot mm^2$ $A_2 := b_2 \cdot t_{f2} = 1200 \cdot mm^2$
	$q_{x} := \frac{1}{I_{y}} \cdot \left[ z_{D} \cdot I_{z1} + A_{1} \cdot e^{3} - A_{2} \cdot (h_{s} - e)^{3} + \frac{t_{w}}{4} \cdot \left[ e^{4} - (h_{s} - e)^{4} \right] \right] = -51.725 \text{ mm}$
	$z_j := z_D - 0.5 q_x = 149.262 \text{ mm}$
Elastic modulus	E := 210000 $\cdot \frac{N}{mm^2}$ G := $\frac{E}{2 \cdot (1 + 0.3)} = 80769 \cdot \frac{N}{mm^2}$
Member length	$L := 6000 \cdot mm$
Critical moment	$\mathbf{M}_{cr} := \frac{\pi^2 \cdot \mathbf{E} \cdot \mathbf{I}_z}{\mathbf{L}^2} \cdot \left( \sqrt{\frac{\mathbf{I}_{\omega}}{\mathbf{I}_z} + \frac{\mathbf{L}^2 \cdot \mathbf{G} \cdot \mathbf{I}_t}{\pi^2 \cdot \mathbf{E} \cdot \mathbf{I}_z} + \mathbf{z}_j^2} + \mathbf{z}_j \right) = 220.77 \text{kN} \cdot \text{m}$



• Beam-column FE model (csBeam7)

Figure 53 shows the LTB of the mono-symmetric member subjected to equal end moments. The critical moment is computed by the ConSteel software using csBeam7 finite element model.



Fig.53 LTB of simple supported mono-symmetric structural member subjected to equal end moments (n=16)

• Shell FE model (csShell3)

Figure 54 shows the LTB of the mono-symmetric member subjected to equal end moments. The critical force is computed by the ConSteel software using csShell3 finite element model.



Fig.54 LTB of simple supported mono-symmetric structural member subjected to equal end moments ( $\delta$ =50mm)



1,002

1,002

# Evaluation

200-12;400-8;

100-12

**Table 28** shows the critical moment for lateral torsional buckling of the member which calculated by hand and computed by the ConSteel software using **csBeam7** and **csShell3** models. The result is accurate.

ab.20 Stability analysis of mono-symmetric member subjected to equal end moments								
		- 1	csBeam7 ²			csShell3 ³		
section	critical force	theory ¹	n	result	1/2	δ	result	1/3
Welded mono-			2	221,67	0,996	50	219,77	1,005
symmetric I	M _{cr} [kNm]	220,77	4	220.37	1,002	25	217.13	1,016

Tab.28 Stability analysis of mono-symmetric member subjected to equal end moments

*) given by the automatic mesh generation (default)

#### Note

In the **Table 28 n** denotes the number of the finite elements of the **csBeam7** model,  $\delta$  denotes the maximum shell FE size.

6*

16

220.30

220,28

# WE-29 Lateral torsional buckling (mono-symmetric section & triangular moment distribution)

**Figure 55** shows a simple fork supported member with welded mono-symmetric I section (flange: 200-12 and 100-12; web: 400-8) subjected to transverse force at the middle cross-section of the member. The critical force is calculated by hand and by the ConSteel software using **csBeam7** and **csShell3** models.



Fig.55 Simple fork supported member with mono-symmetric welded I section subjected to transverse force (LTB)



VERIFICATION MANUAL

# A) Calculation by hand

	Section:	welded monsy top flange	mmetric I section $b_1 := 200 \cdot mm$ t	en := 12 · mm			
		web	$h_{} := 400 \cdot \text{mm}$ t				
		bottom flange	$b_2 := 100 \cdot mm$ t	$W_{t_2} := 12 \cdot \text{mm}$			
Sectional properties		properties	$Z_{S} := 248.4 \cdot \text{mm}$	(by GSS model of ConSteel)			
			$z_{D} := 123.4 \cdot mm$	(by GSS model of ConSteel)			
			$I_{z1} := t_{f1} \cdot \frac{b_1^3}{12} = 8000000 \text{ mm}^4$ $I_{z2} := t_{f2} \cdot \frac{b_2^3}{12} = 1000000 \text{ mm}^4$				
			$I_z := I_{z1} + I_{z2} = 9000000 \text{ mm}^4$				
			$I_y := 186493000 \text{ mm}^4$	(by GSS model of ConSteel)			
			$I_{t} := \frac{1}{3} \cdot \left( b_{1} \cdot t_{f1}^{3} + b_{2} \cdot t_{f2}^{3} + h_{w} \cdot t_{w}^{3} \right) = 241067 \cdot mm^{4}$				
			$\beta_{\rm f} := \frac{{\rm I}_{\rm Z1}}{{\rm I}_{\rm Z1} + {\rm I}_{\rm Z2}} = 0.889$				
			$h_s := h_w + \frac{t_{f1}}{2} + \frac{t_{f2}}{2} = 412 \cdot mm$				
			$I_{\omega} := \beta_{f} \cdot (1 - \beta_{f}) \cdot I_{z} \cdot h_{s}^{2} = 150883555556 \text{ mm}^{6}$				
			$e := h_w + t_{f2} + \frac{t_{f1}}{2} - Z_S = 169.6 \cdot mm$				
			$A_1 := b_1 \cdot t_{f1} = 2400 \cdot mm^2$ $A_2 := b_2 \cdot t_{f2} = 1200 \cdot mm^2$				
			$q_{x} := \frac{1}{I_{y}} \cdot \left[ z_{D} \cdot I_{z1} + A_{1} \cdot e^{3} - A_{2} \cdot (h_{s} - e)^{3} + \frac{t_{w}}{4} \cdot \left[ e^{4} - (h_{s} - e)^{4} \right] \right] = -51.725 \cdot mm$				
			$z_j := z_D - 0.5 q_x = 149$	9.262 mm			
	Elastic mo	dulus	$E := 210000 \cdot \frac{N}{mm^2}$	$G := \frac{E}{2 \cdot (1 + 0.3)} = 80769 \cdot \frac{N}{mm^2}$			
	Member le Coefficien	ength ts*	L := $6000 \cdot \text{mm}$ C ₁ := 1.365 C ₃	:= 0.411			
	Critical mo	oment	$M_{cr} := C_1 \frac{\pi^2 \cdot E \cdot I_z}{L^2} \cdot \left[ \int_{M_{cr}} \frac{\pi^2 \cdot E \cdot I_z}{L^2} \right]$	$\left[\frac{I_{\omega}}{I_{z}} + \frac{L^{2} \cdot G \cdot I_{t}}{\pi^{2} \cdot E \cdot I_{z}} + (C_{3} \cdot z_{j})^{2} + C_{3} \cdot z_{j}\right] = 213.88 \text{kN} \cdot \text{m}$			
			$F_{cr} := 4 \cdot \frac{M_{cr}}{I} = 142.5$	59 kN			

*) G. Sedlacek, J. Naumes: Excerpt from the Background Document to EN 1993-1-1 Flexural buckling and lateral buckling on a common basis: Stability assessments according to Eurocode 3 CEN / TC250 / SC3 / N1639E - rev2



• Beam-column FE model (csBeam7)

Figure 56 shows the LTB of the mono-symmetric member subjected to transverse force. The critical force is computed by the ConSteel software using **csBeam7** finite element model.



**Fig.56** LTB of simple supported mono-symmetric structural member subjected to transverse force (n=16)

• Shell FE model (csShell3)

Figure 57 shows the LTB of the mono-symmetric member subjected to equal end moments. The critical force is computed by the ConSteel software using csShell3 finite element model.



Fig.57 LTB of simple supported mono-symmetric structural member subjected to transverse force ( $\delta$ =25mm)



# Evaluation

**Table 29** shows the critical moment for lateral torsional buckling of the member which calculated by hand and computed by the ConSteel software using **csBeam7** and **csShell3** models. The result is accurate.

		1	csBeam7 ²		csShell3 ³			
section	critical force	theory ¹	n	result	1/2	δ	result	1/3
Welded mono-			2	143,13	0,996	50	141,5	1,008
symmetric I	F _{cr} [kNm]	142,59	4	142,13	1,003	25	139,4	1,023
200-12;400-8;			8*	141,99	1,004			
100-12			16	141 98	1,004			

Tab.29 Stability analysis of mono-symmetric member subjected to equal end moments

*) given by the automatic mesh generation (default)

#### Note

In the **Table 29 n** denotes the number of the finite elements of the **csBeam7** model,  $\delta$  denotes the maximum shell FE size.

# WE-30 Lateral torsional buckling (C section & equal end moments)

Figure 58 shows a simple fork supported member with cold-formed C section (150x100x30x2) subjected to equal end moments. The critical moment is calculated by hand and by the ConSteel software using **csBeam7** model.



Fig.58 Simple fork supported member with cold-formed C section subjected to equal and moments (LTB)



# A) Calculation by hand

Section:	Cold-formed C section			
	width of flange	$b := 100 \cdot mm$		
	depth	$d := 150 \cdot mm$		
	width of stiffener	$d_1 := 30 \cdot mm$		
	plate thickness	$t := 2 \cdot mm$		

Cross-sectional properties (by ConSteel GSS model)

Sectional radius*

$$\begin{split} I_{y} &:= 3106412 \text{ mm}^{4} \qquad I_{z} := 1206715 \text{ mm}^{4} \\ I_{t} &:= 1072 \cdot \text{mm}^{4} \qquad I_{\omega} := 6989423000 \text{ mm}^{6} \\ \text{e} &:= 38.0 \cdot \text{mm} \qquad \text{e}_{s} := -60.0 \cdot \text{mm} \\ A_{f} &:= (d - t) \cdot t = 296 \cdot \text{mm}^{2} \\ I_{f} &:= \frac{t \cdot (d - t)^{3}}{12} = 540299 \cdot \text{mm}^{4} \\ A_{s} &:= \left(d_{1} - \frac{t}{2}\right) \cdot t = 58 \cdot \text{mm}^{2} \\ I_{s} &:= \frac{t \cdot \left(d_{1} - \frac{t}{2}\right)^{3}}{12} + A_{s} \cdot \left(\frac{d}{2} - \frac{t}{2} - \frac{d_{1} - \frac{t}{2}}{2}\right)^{2} = 209399 \cdot \text{mm}^{4} \\ A_{w} &:= \left(b - \frac{t}{2}\right) \cdot t = 198 \cdot \text{mm}^{2} \\ I_{w} &:= A_{w} \cdot \left(\frac{d}{2} - \frac{t}{2}\right)^{2} = 1084248 \text{ mm}^{4} \\ h &:= b - \frac{t}{2} = 99 \cdot \text{mm} \end{split}$$

$$q_{X} := \frac{1}{I_{Z}} \cdot \left[ e \cdot \left( A_{f} \cdot e^{2} + I_{f} \right) + 2e_{s} \cdot \left( A_{s} \cdot e_{s}^{2} + I_{s} \right) + (2 \cdot e - h) \cdot I_{W} + \frac{t}{2} \cdot \left[ e^{4} - (h - e)^{4} \right] \right] = -41.525 \text{ mm}$$

$$z_{D} := 90.9 \cdot \text{mm}$$

$$z_{j} := z_{D} - 0.5q_{X} = 111.663 \cdot \text{mm}$$

Length of member  $L := 4000 \cdot mm$ 

Critical moment

$$M_{cr} := \frac{\pi^2 \cdot E \cdot I_y}{L^2} \cdot \left( \sqrt{\frac{I_{\omega}}{I_y} + \frac{L^2 \cdot G \cdot I_t}{\pi^2 \cdot E \cdot I_y} + z_j^2} + z_j \right) = 94.108 \text{kN} \cdot \text{m}$$



• Beam-column FE model (csBeam7)

**Figure 59** shows the LTB of the member with C section subjected to equal end moments. The critical moment is computed by the ConSteel software using **csBeam7** finite element model.



Fig.59 LTB of simple supported C structural member subjected to equal end moments (n=16)

#### Evaluation

**Table 30** shows the critical end moment for lateral torsional buckling of the C member calculated by hand and computed by the ConSteel software using **csBeam7** model. The result is accurate.

			csBeam7 ²		
section	critical force	theory ¹	n	result	1/2
	M _{cr} [kNm]	94,108	2	94,07	0,994
Cold formed C			4	93,42	1,007
150x100x30x2			6*	93,38	1,008
			16	93,38	1,008

Tab.30 Stability analysis of the C member subjected ti equal end moments

*) given by the automatic mesh generation (default)

#### Note

In the Table 30 n denotes the number of the finite elements of the csBeam7 model.

# WE-31 Lateral torsional buckling (C section & equal end moments)

Figure 60 shows a simple fork supported member with cold-formed C section (150x200x30x2) subjected to equal end moments. The critical moment is calculated by hand and by the ConSteel software using **csBeam7** model.





Fig.60 Simple fork supported member with cold-formed C section subjected to equal and moments (LTB)

# A) Calculation by hand

Section:	Cold-formed C section	n				
	width of flange depth width of stiffener	$b := 200 \cdot mm$ $d := 150 \cdot mm$ $d_1 := 30 \cdot mm$				
	plate thickness	$t := 2 \cdot mm$				
Cross-sectional properties (by ConSteel GSS model)						
		$I_{y} := 6362658 \text{ mm}^{4}$	$I_z := 5269945 \cdot mm^4$			
		$I_t := 1734 \cdot mm^4$	$I_{\omega} := 35770000000  \text{mm}^6$			
		e := 85.2∙ mm	$e_{s} := -112.8 \cdot mm$			
Sectional	radius*	$A_{f} := (d - t) \cdot t = 296 \cdot m$	2 1m			
		$I_{f} := \frac{t \cdot (d-t)^{3}}{12} = 540299 \cdot mm^{4}$				
		$A_s := \left(d_1 - \frac{t}{2}\right) \cdot t = 58 \cdot mm^2$				
		$I_{s} := \frac{t \cdot \left(d_{1} - \frac{t}{2}\right)^{3}}{12} + A_{s} \cdot \left(\frac{d_{1} - \frac{t}{2}}{2} - \frac{d_{1} - \frac{t}{2}}{2}\right)^{2} = 209399 \cdot \text{mm}^{4}$				
		$A_{w} := \left(b - \frac{t}{2}\right) \cdot t = 398 \cdot mm^{2}$				
		$I_{W} := A_{W} \cdot \left(\frac{d}{2} - \frac{t}{2}\right)^{2} =$	2179448 mm ⁴			
		$\mathbf{h} := \mathbf{b} - \frac{\mathbf{t}}{2} = 199 \cdot \mathbf{mm}$				


$$q_{X} := \frac{1}{I_{Z}} \cdot \left[ e \cdot \left( A_{f} \cdot e^{2} + I_{f} \right) + 2e_{S} \cdot \left( A_{S} \cdot e_{S}^{2} + I_{S} \right) + (2 \cdot e - h) \cdot I_{W} + \frac{t}{2} \cdot \left[ e^{4} - (h - e)^{4} \right] \right] = -30.737 \text{ mm}$$

$$z_{D} := 187.8 \cdot \text{mm}$$

$$z_{j} := z_{D} - 0.5 q_{X} = 203.168 \text{ mm}$$
Length of member
$$L := 4000 \cdot \text{mm}$$
Critical moment
$$M_{cr} := \frac{\pi^{2} \cdot E \cdot I_{Z}}{L^{2}} \cdot \left( \sqrt{\frac{I_{\omega}}{I_{Z}} + \frac{L^{2} \cdot G \cdot I_{t}}{\pi^{2} \cdot E \cdot I_{Z}}} + z_{j}^{2} + z_{j} \right) = 288.68 \text{kN} \cdot \text{m}$$

#### **B)** Computation by ConSteel

• Beam-column FE model (csBeam7)

Figure 61 shows the LTB of the member with C section subjected to equal end moments. The critical moment is computed by the ConSteel software using csBeam7 finite element model.



**Fig.61** LTB of simple supported C structural member subjected to equal end moments (n=16)



## Evaluation

**Table 31** shows the critical end moment for lateral torsional buckling of the C member calculated by hand and computed by the ConSteel software using **csBeam7** model. The result is accurate.

		1	csBeam7 ²		
section	critical force	theory '	n	result	1/2
			2	290,41	0,994
Cold formed C	M _{cr} [kNm]	288,68	4	288,39	1,001
150x200x30x2			6*	288,28	1,001
			16	288.25	1,001

*) given by the automatic mesh generation (default)

#### Note

In the Table 31 n denotes the number of the finite elements of the csBeam7 model.

# WE-32 Flexural-torsional buckling (U section)

**Figure 62** shows a simple fork supported member with cold-formed U section (120x120x4) subjected to compressive force. The critical force is calculated by hand and by the ConSteel software using **csBeam7** and **csShell3** models.



Fig.62 Simple fork supported member with cold-formed U section subjected to compressive force (FTB)



# A) Calculation by hand

Section:	Cold-formed U section		
	width of flange depth plate thickness	$b := 120 \cdot mm$ $d := 120 \cdot mm$ $t := 4 \cdot mm$	
Elastic mod	dulus	$E := 210000 \cdot \frac{N}{2}$ $G := \frac{1}{2 \cdot (1 - 1)^2}$	$\frac{E}{1+0.3} = 80769 \frac{N}{2}$
Length of r	nember	$mm^{-}$ $L = 4000 \cdot mm^{-}$	mm
Cross-sectio	onal properties (by Con	Steel GSS model)	
		$A := 1408 \cdot mm^2$	
		$I_z := 2180000 \text{ mm}^4$	i _z := 39.4 ⋅ mm
		$I_y := 3699100 \text{ mm}^4$	i _y := 51.3 ⋅ mm
		$I_t := 7927 \cdot mm^4$	
		$I_{\omega} := 5264600000 \text{ mm}^6$	$y_{\omega} := 90.1 \cdot mm$
		$i_{\omega} := \sqrt{i_y^2 + i_z^2 + y_{\omega}^2} = 110.9$	15 mm
		$i_p := \sqrt{\frac{I_y + I_z}{A}} = 64.618 \text{ mm}$	
Critical for	ses	$P_{cr.y} := \frac{\pi^2 \cdot E \cdot I_y}{L^2} = 479.176 \text{ kN}$	
		$P_{\omega} := \frac{1}{i_{\omega}^{2}} \cdot \left( \frac{\pi^{2} \cdot E I_{\omega}}{L^{2}} + G \cdot I_{t} \right) =$	107.48 kN

Critical compressive force

$$P_{cr} := \frac{i_{\omega}^{2}}{2 \cdot i_{p}^{2}} \cdot \left(P_{cr.y} + P_{\omega}\right) - \sqrt{\frac{i_{\omega}^{4}}{4 \cdot i_{p}^{4}} \cdot \left(P_{cr.y} + P_{\omega}\right)^{2} - P_{cr.y} \cdot P_{\omega} \cdot \frac{i_{\omega}^{2}}{i_{p}^{2}}} = 92.768 \text{ kN}$$



#### **B)** Computation by ConSteel

• Beam-column FE model (csBeam7)

**Figure 63** shows the flexural torsional buckling of the member with U section subjected to compressive force. The critical force is computed by the ConSteel software using **csBeam7** finite element model.



**Fig.63** FTB of the simple supported U structural member subjected to compressive force (n=16)

• Shell FE model (csShell3)

**Figure 64** shows flexural torsional buckling of the member with U section subjected to compressive force. The critical force is computed by the ConSteel software using **csShell3** finite element model.



**Fig.64** FTB of the simple supported U structural member subjected to compressive force ( $\delta$ =25mm)



## Evaluation

**Table 32** shows the critical compressive force for flexural lateral buckling of the member which calculated by hand and computed by the ConSteel software using both of the **csBeam7** and **csShell3** models. The results are accurate.

					Con	Steel		
section	critical force	theory ¹		csBeam7	2		csShell3 ³	
			n	result	1/2	δ	result	1/3
			2	93,24	0,995	50	94,42	0,983
U 120x120x4	P _{cr} [kN]	92,77	4	92,86	0,999	25	93,55	0,992
cold formed			6*	92,84	0,999			
			16	92,83	0,999			

Tab.32 Stability	analysis o	of member	subjected to	compressive	force
			Subjected to	eompressive	

*) given by the automatic mesh generation (default)

#### Notes

In the **Table 32** n denotes the number of the finite elements of the csBeam7 model,  $\delta$  denotes the maximum size of the shell finite elements in the csShell3 model in [mm].

# WE-33 Interaction of flexural buckling and LTB (symmetric I section & equal end moments and compressive force)

**Figure 65** shows a simple fork supported member with welded symmetric I section (200-12, 400-8) subjected to compressive force and equal end moments. The critical moment with constant compressive force is calculated by hand and by the ConSteel software using **csBeam7** model.



*Fig.65* Simple fork supported member with welded I section subjected to constant compressive force and equal end moments (interaction)



#### A) Calculation by hand

Section:	welded symme	etric I section	
	flange	$b := 200 \cdot mm$	$t_f := 12 \cdot mm$
	web	$h_w := 400 \cdot mm$	$t_{W} := 8 \cdot mm$
Sectional p	properties (by G	SS model)	
		$A := 8000 \cdot mm^2$	
		$I_y := 246417000 \text{ mm}^4$	i _y := 175.5 · mm
		$I_z := 16017000 \text{ mm}^4$	$i_z := 44.7 \cdot mm$
		$I_t := 301351 \cdot mm^4$	
		$I_{\omega} := 678.210^9 \cdot mm^6$	$i_{\omega} := \sqrt{i_y^2 + i_z^2} = 181.103 \text{mm}$
Elastic mod	dulus	$E := 210000 \cdot \frac{N}{2}$	$G := \frac{E}{2(1+0.3)} = 80769 \cdot \frac{N}{2}$
Member le	ngth	mm ⁻ L := 6000∙ mm	mm ²
Critical for	ces	$P_{cr.z} := \frac{\pi^2 \cdot E \cdot I_z}{L^2} = 922.142 \cdot k$	N
		$P_{\omega} := \frac{1}{i_{\omega}^{2}} \cdot \left( G \cdot I_{t} + \frac{\pi^{2} \cdot E \cdot I_{\omega}}{L^{2}} \right)$	= 1932.588 kN
		$M_{cr} := \frac{\pi^2 \cdot E \cdot I_Z}{L^2} \cdot \sqrt{\frac{I_{\omega}}{I_Z} + \frac{L^2 \cdot C}{\pi^2 \cdot E}}$	$\frac{\overline{FI}_{t}}{FI_{z}} = 241.766 \text{kN} \cdot \text{m}$
Critical mo	ment with const	atnt compressive force	

$$P := 500 \cdot kN \qquad M := M_{cr} \cdot \sqrt{\left(1 - \frac{P}{P_{cr.z}}\right) \cdot \left(1 - \frac{P}{P_{\omega}}\right)} = 140.8 kN \cdot m$$

#### **B)** Computation by ConSteel

• Beam-column FE model (csBeam7)

**Figure 66** shows the interactive buckling of the member with welded I section subjected to constant compressive force and equal end moments. The critical moment is computed by the ConSteel software using **csBeam7** finite element model.



**Fig.66** Interactive buckling of the simple supported structural member subjected to constant compressive force and equal end moments (n=16)



## Evaluation

**Table 33** shows the critical moment for the interactive buckling mode of the member subjected to constant compressive force (P=500kN) and equal end moments. The crirical moment was calculated by hand and computed by the ConSteel software using **csBeam7** model. The result is accurate.

Tab.33	Stability analysis of the member subjected to constant compressive force and equal end
	moments

_	critical moment	csBeam7			2
section	(P=500 kN)	theory ¹	n	result	1/2
			2	142,0	0,992
Welded I	M _{cr} [kNm]	140,8	4	140,8	1,000
200-12;400-8			6*	140,8	1,000
			16	140.8	1,000

*) given by the automatic mesh generation (default)

#### Notes

In the Table 33 n denotes the number of the finite elements of the csBeam7 model.



# 3. Design

# 3.1 Simple members

The following two worked examples (WE-34 & WE-35) were published in the following paper:

HUGHES, A.F., ILES, D.C. and MALIK, A.S.: Design of steel beams in torsion, SCI Publication P385, In accordance with Eurocodes and the UK National Annexes, p. 96 (Example 1 & 2)

## WE-34: Unrestrained beam with eccentric point load

A simply supported beam spans 4 m without intermediate restraint (see **Figure 67**). It is subject to a permanent concentrated load of 74 kN at mid-span, which is attached to the bottom flange at an eccentricity of 75 mm. Verify the trial section 254UKC73 (S275). Any restraint provided by the end plate connections against warping is partial, unreliable and unquantifiable. The ends of the member will therefore be assumed to be free to warp.



Fig.67 Unrestrained beam with eccentric point load



#### Section properties

properties	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
А	$9.310 \text{ mm}^2$	$9.323 \text{ mm}^2$	0,999
Iz	$39.100.000 \text{ mm}^4$	$39.079.227 \text{ mm}^4$	1,000
W _{pl.y}	$992.000 \text{ mm}^3$	992.909 mm ^{3*}	0,999
W _{pl.z}	$465.000 \text{ mm}^3$	$460.230 \text{ mm}^{3*}$	1,010
I _T	$576.000 \text{ mm}^4$	591.937 mm ⁴	0,973
Iw	$562.000.000.000 \text{ mm}^6$	556.700.000.000 mm ⁶	1,010
f _v	275 N/mm ²	275 N/mm ² **	1,000

*) by EPS model (approximation)

**) by EN 1993-1-1

#### Design values of vertical and horizontal bending moments and shear

internal force *	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
$M_{y.Ed}$	102 kNm	103,2 kNm	0,988
V _{Ed}	52 kNm	52,56 kNm	0,989

*) by first order theory

#### Maximum rotation of the beam

position	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
mid-span	0,053 rad	0,052 rad	1,019

#### Total (second order) minor axis bending

internal force	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
M _{z.Ed}	5,4 kNm *	5,010 kNm **	1,078

*) approximation

**) 'exact' numerical result by second order analysis

#### Warping moment

internal force	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
M _{w.Ed.max}	21.1 kNm *	19.77 kNm **	1,067
P 2 (*			

*) for one flange

**) calculated from B bimoment:  $M_w = \frac{1}{2} B \frac{I_z}{I_\omega} \frac{\omega}{y_{max}}$ 





#### **Cross-sectional resistance**

resistance	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
M _{y.Rd}	273 kNm	273.1 kNm	1,000
M _{z.Rd}	128 kNm	126,6 kNm	1,011
V _{pl.Rd}	406 kN	406,8 kN	0,998

#### **Bending resistance**

used resistance	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
η	0,51 *	0,988 ** (0,421 ***)	0,516 (1,210)

*) non-linear plastic interaction formula of UK Annex

**) elastic resistance formula of EC3-1-1 with warping effect (6.2.1 (5))

***) plastic interaction formula of EC3-1-1 neglecting warping effect (6.2.1 (7))

#### **Buckling resistance**

property	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
M _{cr}	1.049 kNm *	1.062 kNm **	0,999
2	0.51	0.507	0,981
$\chi_{LT}$	0.950	0.957	1.028
$\lambda_{LT}$ M _{b Rd}	259 kNm	273,1 kNm ****	0,986

*) computed by LTBeam software

**) force acts in centroid

***) force acts on bottom flange (basic condition of the example)

****) with  $f_v = 275 \text{N/mm}^2$  (EC3-1-1)

#### Interaction between LTB, minor axis bending and torsion effects

used capacity	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
η	0,66 *	0,419 **	1,575

*) by the special formula specified by UK National Annex for EN 1993-1-1

**) by the General Method EN 1993-1-1 6.3.4 with M_{cr} taken eccentricity into consideration but neglecting the effect of warping moment

#### **Evaluation**

The worked example of **SCI Publication P385 Example 1** is a hand design oriented example using approximations to take torsional behavior and second order effects into consideration. Interaction design between LTB, minor axis bending and torsion effects was calculated by the special formula specified by the UK National Annex for EN1993-1-1. ConSteel software uses exact numerical solution for torsion and second order effect. ConSteel uses the General Method of EN 1993-1-1 for interaction buckling design which neglects the effect of warping in the design. ConSteel uses elastic cross-section resistance formula taking the warping effect into consideration. However, the design by UK Annex leads to considerable higher resistance than the EC3-1-1 (58%).



#### WE-35: Crane beam subject to two wheel loads

A crane beam spans 7.5 m without intermediate restraint (see **Figure 68**). Verify the chosen  $533 \times 210$  UKB 101 section under the condition shown below, in which two wheel loads 3 m apart act at rail level 65 mm above the beam. The ULS design values of the loads from the wheels of the crane are 50 kN vertical together with 3 kN horizontal. Allow 2 kN/m for the design value of the self weight of the beam and crane rail. Consider the design effects for the location shown below (which gives maximum vertical bending moment). Assume that an elastomeric pad will be provided between the rail and the beam. According to EN 1993-6, 6.3.2.2(2), the vertical wheel reaction should then be taken as being effectively applied at the level of the top of the flange and the horizontal load at the level of the rail.



Fig.68 Crane beam subject to two wheel loads

#### **Section properties**

properties	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
А	$12.900 \text{ mm}^2$	$12.867 \text{ mm}^2$	1,003
Iz	$26.800.000 \text{ mm}^4$	$26.857.000 \text{ mm}^4$	0,998
W _{pl.y}	$2.610.000 \text{ mm}^3$	$2.613.112 \text{ mm}^3$	0,999
W _{pl.z}	399.000 mm ³	383.670 mm ³ *	1,040
I _T	$1.010.000 \text{ mm}^4$	$1.016.404 \text{ mm}^4$	0,994
$I_{w}$	$1.810.000.000.000 \text{ mm}^6$	1.811.000.000.000 mm ⁶	1,000
fy	265 N/mm ²	275 N/mm ² **	0,964

**) by EPS model (approximation)

***) by EN 1993-1-1



internal force *	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
M _{y.Ed}	133,5 kNm	133,5 kNm	1,000
M _{z.Ed}	7,2 kNm	7,2 kNm	1,000

#### Design values of vertical and horizontal bending moments and shear

*) by first order theory

#### Maximum rotation of the beam

position	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
LH wheel	0,84 deg	0,834 deg	1,007
maximum *	-	0,876 deg	-

*) not given by the publication

#### Total (second order) minor axis bending

internal force	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
M _{z.Ed}	9,2 kNm *	10,87 kNm **	0,846

*) approximation **) 'exact' numerical result

#### Warping moment

internal force	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
M _{w.Ed.max}	2,28 kNm *	2,14 kNm ² **	1,065

*) for one flange

**) bimoment

**SCI** Publication P385



#### **Cross-sectional resistance**

resistance	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
M _{y.Rd}	692 kNm	718,6 kNm *	0,963
M _{z.Rd}	106 kNm	105,5 kNm *	1,005
V _{pl.Rd}	952 kN	982,6 kN *	0,967

*) calculated with  $f_y=275$  N/mm²

#### **Buckling resistance**

property	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
M _{cr}	320 kNm	320,4 kNm	0,999
$\lambda_{LT}$	1,47	1,498	0,981
$\chi_{\scriptscriptstyle LT}$	0,401	0,39	1,028
M _{b.Rd}	277 kNm	280,5 kNm	0,986





used capacity	SCI Publication P385 ¹	ConSteel (csBeam7 model) ²	1/2
η	0,62 *	0,579 **	1,071

Interaction between LTB, minor axis bending and torsion effects

*) by the special formula specified by UK National Annex for EN 1993-1-1 **) by the General Method EN 1993-1-1 6.3.4

#### **Evaluation**

The worked example of **SCI Publication P385 Example 2** is a hand design oriented example using approximations to take torsional behavior and second order effects into consideration. Interaction design between LTB, minor axis bending and torsion effects is calculated by the special formula specified by UK National Annex for EN1993-1-1. Contrary, the ConSteel software uses exact numerical solution for torsion and second order effect and it uses the General Method of EN 1993-1-1 for interaction buckling design (neglecting the effect of torsion). However, the deviation in the governing result of the design by the two approaches is not more than 7%.

# WE-36 Simply supported beam with lateral restraint at load application point

**Figure 69** shows a Simply supported beam with lateral restraint at load application point **A) Verification** 

Access Steel example (SX007): <u>Simply supported beam with lateral restraint at load</u> application point



Fig.69 Simply supported beam with lateral restraint at load application point





Loads Permanent loads Self weight of the beam +147kN at 5000mm



#### **Imposed loads**



## Load combinations

Name	Limit state	Self Weight	Permanent load	Imposed load
Load combination-1	(ULS) Ultimate	1,35	1,35	1,5



# Analysis results

# Moment diagram – Load Combination 1



# Bending moment value at midspan (5000 mm)

Load combination	<b>ConSteel first order</b> <b>analysis result</b> s [kNm]	<b>Reference value</b> [kNm]	Difference[%]
Combination 1	-842,11	-842,13	0,0

## Shear diagram – Load Combination 1



# Dominant shear force

Load combination	<b>ConSteel first order</b> analysis results [kN]	<b>Reference value</b> [kN]	Difference[%]
Combination 1	-171,99	172	0,0



#### **Beam verification**

# Section classification



# Cross section resistance check

#### Bending about the major axis

ConSteel results		Reference	Difference[%]
		results	
Bending about the major axis			
Utilization	75,5 %		
Section class	1		
Applied part of standard	6.2.5 (1)-(3) - (6.12-6.15) formula		
My,Ed	-842,1 kNm	M 11151N	0.0
My,c,Rd	1 115,1 kNm	$M_{c,Rd}$ =1115 KN	0,0
Wpl.y.min	3 141 180,8 mm ³		
fy	355,0 N/mm ²		
γM0	1,0		



#### Minor axis shear

ConSteel results		Reference	Difference[%]
		results	
Minor axis shear			
Utilization	11,5 %		
Section class	1		
Applied part of standard	6.2.6 (1)-(3) - (6.17, 6.18) formula		
Vz,Ed	164,8 kN	VI 1427 L-NI	0.0
Vz,c,Rd	1 437,5 kN	$V_{Rd} = 1437 \text{ KIN}$	0,0
Az	7 013,5 mm ²		
fy	355,0 N/mm ²		
γмо	1,0		

# Stability check of the beam

# Lateral torsional buckling

ConSteel results		Reference results	Differen
Summary of results			
Used capacity in lateral-torsional buckling:	89,5%		
Place of the dominant cross section:	5000 mm from the first n		
Number of the dominant finite element:	4		
Place of the dominant FE node:	k		
Class of the dominant cross section for compres	1		
Used part of standard:	6.3.2(6.46-6.49) formula		
Detailed calculation			
My,Ed	842,1 kNm		
My,b,Rd	940,9 kNm	M _{cr} =942,2 kNm	0,1
Mor	1585,3 kNm	$M_{cr}=1590$ kNm	0,3
L	5000 mm		
k	1,000		
kw	1,000		
Сі	1,770		
C2	1,000		
C3	0,939		
Zg	0 mm	1 0.027	0.0
λLT	0,839	$\lambda_{LT} = 0,837$	0,2
αιτ	0,490		
Φ	0,871		
χLT	0,739	<i>x</i> −0.740	0.0
χLT,mod	0,844	$\chi_{LT}=0,740$	0,0
f	0,876	f-0.876	0.0
ko	0,752	1-0,870 1 - 0.752	0,0
Wpl.y	3141180,8 mm ³	$K_{C} = 0, 7.52$	0,0
fy	355,0 N/mm ²		
γMi	1,0		



# WE-37 Simply supported laterally unrestrained beam

Figure 70 shows a simply supported beam.

#### A) Verification

Acces Steel example (SX001): Simply supported laterally unrestrained beam



<u> </u>		2
•	5700 mm	<b>&gt;</b>
		۵ ۵
Ρ1 x,y,z,xx		P2 y,z,xx
	5700 mm	

Fig.70 Simply supported beam

# Loads

# **Permanent loads**

Self weight of the beam is calculated by ConSteel



# **Imposed loads**





#### Load combinations

Name	Limit state	DL	LL
Load combination-1	(ULS) Ultimate 📃 💌	1,35	1,5

## Analysis results

## Moment diagram – Load Combination 1



# Bending moment value at midspan (2850 mm)

Load combination	<b>ConSteel first order</b> analysis results [kNm]	<b>Reference value</b> [kNm]	Difference[%]
Combination 1	-90,48	-90,48	0,0

# Shear diagram – Load Combination 1



#### **Dominant shear force**

Load combination	<b>ConSteel first order</b> <b>analysis results</b> [kN]	<b>Reference value</b> [kN]	Difference[%]
Combination 1	-63,50	-63,50	0,0



## **Beam verification**



## **Cross section resistance check**

#### Bending about the major axis

ConSteel results		Reference results	Difference[%]
Bending about the maj			
Utilization	47,9 %	47,9	0,0
Section class	1		
Applied part of stand	6.2.5 (1)-(3) - (6.12-6.15) formula		
My,Ed	-90,5 kNm		
My,c,Rd	189,0 kNm	$M_{c,Rd}$ =189,01 kN	0,0
Wpl,y,min	804 330,7 mm ³		
fy	235,0 N/mm ²		
γмо	1,0		

#### Minor axis shear

ConSteel results		Reference results	Difference[%]
Minor axis shear			
Utilization	15,2 %	15,2	0,0
Section class	1		
Applied part of stan	6.2.6 (1)-(3) - (6.17, 6.18) formula		
Vz,Ed	-63,5 kN		
Vz,c,Rd	418,0 kN	V _{pl,z,Rd} =417,9 kN	0,02
Az	3 080,9 mm ²		
fy	235,0 N/mm ²		
γмο	1,0		



# Stability check of the beam

Lateral-torsional buckling

ConSteel results		Reference results	Differen
			ce[%]
Lateral-torsional buckling			
Summary of results			
Used capacity in lateral-torsional buckling:	98,2%	98,1	0,10
Place of the dominant cross section:	2850 mm from the first n		
Number of the dominant finite element:	3		
Place of the dominant FE node:	k		
Class of the dominant cross section for compres	1		
Used part of standard:	6.3.2(6.46-6.49) formula		
Detailed calculation			
My,Ed	90,5 kNm		
My,b,Rd	92,2 kNm	$M_{b,Rd}=92,24$ kNm	0,04
Mor	113,8 kNm	M _{cr} =113,9 kNm	0,09
L	5700 mm		
k	1,000		
kw	1,000		
Ci	1,132		
C2	0,459		
C3	0,525		
Zg	165 mm	1.000	0.00
λιτ	1,289	$\lambda_{LT}=1,288$	0,08
αLT	0,490		0.0
Φ	1,341	φ=1,34	0,0
χLT	0,480	$\chi_{LT}=0,480$	0,0
%LT,mod	0,488	$\chi_{\rm LTmod}=0,488$	0,0
f	0,984	t=0,984	0,0
ko	0,940	$k_c = 0,94$	0,0
Wpl.y	804330,7 mm ³		
fy	235,0 N/mm ²		
γM1	1,0		



# WE-38 Simply supported beam with continuous lateral and twist restraint

Figure 71 shows a simply supported beam. The beam is continuously braced against lateral deflections and twist rotations.

#### A) Verification

The Behaviour and Design of Steel Structure to EC3 (fourth edition): 7.7.2 Example 2



Fig.71 Simply supported beam with continuous lateral and twist restraint



Bending moment value at midspan (4500 mm)



Load combination	<b>ConSteel first order</b> <b>analysis results</b> [kNm]	<b>Reference value</b> [kNm]	Difference[%]
Combination 1	-45,00	-45,00	0,0

## **Beam verification**

#### Section classification



#### **Cross section resistance check**

	Compression				
Coi	nSteel results		]	Reference results	Difference[%]
	Compression				
	Utilization	15,4 %			
	Section class	1			
	Applied part of stand	6.2.4 (1)-(2) - (6.9-6.11) formula			
	NEd	-200,0 kN		No acculto	
	No,Rd	1 297,1 kN		No results	
	Α	4 716,6 mm ²			
	fy	275,0 N/mm ²			
	γM0	1,0			



Co	onSteel results			Reference results	Difference[%]
	Bending about the majo				
	Utilization	33,9 %		M _{c,Rd} =132,8 kN	0,0
	Section class	1			
	Applied part of stand	6.2.5 (1)-(3) - (6.12-6.15) formula			
	My,Ed	-45,0 kNm			
	My,c,Rd	132,9 kNm			
	Wpl,y,min	483 230,8 mm ³			
	fy	275,0 N/mm ²			
	γM0	1,0			

#### Bending about the major axis

#### Minor axis shear

Co	nSteel results		Reference results	Difference[%]
	Minor axis shear			
	Utilization	3,6 %		
	Section class	1		
	Applied part of stand	6.2.6 (1)-(3) - (6.17, 6.18) formula		
	Vz,Ed	-10,0 kN		
	Vz,c,Rd	279,3 kN	No results	
	Az	1 759,4 mm ²		
	fy	275,0 N/mm ²		
	γмо	1,0		

# Stability check of the beam

Strong axis buckling			
ConSteel results		Reference results	Difference[%]
NEd	200,0 kN		
Nb,Rd	902,6 kN	N _{b,rd} =900kN	0,29
Nor	1418,0 kN		
L	9000 mm		
k	0,999		0.40
λ	0,956	λ=0,960	-0,42
α	0,210	1 1 0 4 1	0.38
Φ	1,037	$\phi = 1,041$	-0,38
χ	0,696	χ=0,093	0,45
A	4716,6 mm ²		
fy	275,0 N/mm ²		
γM1	1,0		



Interaction of buckling and bending

ConSteel results		Reference	Difference[%]
		results	
Summary of results			
Used capacity	57,7%	57,9%	0,35
Used part of standard:	6.3.3 (6.61-6.62) formuk		
Applied method for interaction factors	Method 2 (Annex B)		
Strong axis buckling			
Summary of results			
Used capacity in lateral buckling:	22,2%		
Place of the dominant cross section:	0 mm from the first node		
Number of the dominant finite element:	1		
Place of the dominant FE node:	j		
Class of the dominant cross section for compress	2		
Used part of standard:	6.3.1(6.46-6.49) formula		
Detailed calculation			
Results of major axis bending			
Capacity of major axis bending check:	33,9%		
Place of the dominant cross section:	4500 mm from the first n		
Number of the dominant finite element:	4		
Place of the dominant FE node:	j		
Class of the dominant cross section for bending:	1		
Used part of standard:	6.2.5 (6.12-6.15) formuk		
My,Ed	45,0 kNm		
My,b,Rd	132,9 kNm		
Wply	483230,8 mm3		
fy	275,0 N/mm ²		
<u>γΜ1</u>	1,0		
Interaction factors			
Used part of standard:	Annex B, Table B1-B3		
kyy	1,051	k _{vv} =1,052	0,0
Сту	0,900	$C_{my} = 0,90$	0,0



#### WE-39 Two span beam

Figure 72 shows a two span beam. The beam is braced against lateral deflections and twist rotations in the middle.

## A) Verification

The Behaviour and Design of Steel Structure to EC3 (fourth edition): 7.7.3 Example 3

S 275 EN 10025-2, UB 254x146x37





Fig.72 Two span beam

Loads





## Moment diagram





## Bending moment value at middle support (4500 mm)

Load combination	<b>ConSteel first order</b> <b>analysis result</b> s [kNm]	<b>Reference value</b> [kNm]	Difference[%]
Combination 1	8,07	8,10	0,37

## **Beam verification**



#### **Cross section resistance check**

~	•
Comp	ression
Comp	ression

Co	ConSteel results		Reference results	Difference[%]
	Compression			
	Utilization	15,4 %		
	Section class	2		
	Applied part of stand	6.2.4 (1)-(2) - (6.9-6.11) formula		
	NEd	-200,0 kN		
	Nc,Rd	1 297,1 kN	No results	
	Α	4 716,6 mm ²		
	fy	275,0 N/mm ²		
	γM0	1,0		



# Bending about the minor axis

ConSteel results		Reference results	Difference[%]
Bending about the mine			
Utilization	25,1 %		
Section class	2		
Applied part of stand	6.2.5 (1)-(3) - (6.12-6.15) formula	M _{c,z,Rd} =32,7 kN	1,84
Mz,Ed	-8,1 kNm		
Mz,c,Rd	32,1 kNm		
Wpl,z,min	116 809,6 mm ³		
fy	275,0 N/mm ²		
<b>γ</b> Μ0	1,0		

#### Major axis shear

Сс	ConSteel results		Reference results	Difference[%]
	Major axis shear			
	Utilization	1,8 %		
Section class Applied part of stand Vy,Ed Vy,o,Rd Ay fy YM0	Section class	2		
	6.2.6 (1)-(3) - (6.17, 6.18) formula	NT14		
	9,0 kN			
	Vy.c.Rd	506,7 kN	No results	
	3 191,5 mm ²			
	fy	275,0 N/mm ²		
	<b>γ</b> M0	1,0		

# Stability check of the beam

Weak axis buckling			
ConSteel results		Reference results	Difference[%]
NEd	200,0 kN		
Nb,Rd 4	448,6 kN	N _{b,rd} =449kN	0,09
Ner	584,0 kN		
L	4500 mm		
k	0,999	1 1 100	0.0
λ	1,490	λ=1,490	0,0
α	0,340	+ 1 920	0.06
Φ χ	1,830	$\phi = 1,829$ $\chi = 0,346$	0,00
	0,346		
Α	4716,6 mm ²		
fy	275,0 N/mm ²		
γM1	1,0		



Interaction of buckling and bending

ConSteel results		Reference	Difference[%]
		results	
Summary of results			
Used capacity	67,2%	66,6%	0,01
Used part of standard:	6.3.3 (6.61-6.62) formula		
Applied method for interaction factors	Method 2 (Annex B)		
Weak axis buckling			
Summary of results			
Used capacity in lateral buckling:	44,6%		
Place of the dominant cross section:	0 mm from the first node		
Number of the dominant finite element:	1		
Place of the dominant FE node:	j		
Class of the dominant cross section for compres	2		
Used part of standard:	6.3.1(6.46-6.49) formula		
Detailed calculation			
Results of minor axis bending			
Capacity of minor axis bending check:	25,1%		
Place of the dominant cross section:	4500 mm from the first n		
Number of the dominant finite element:	16		
Place of the dominant FE node:	j		
Class of the dominant cross section for bending:	1		
Used part of standard:	6.2.5 (6.12-6.15) formula		
Mz,Ed	8,1 kNm		
Mz,b,Rd	32,1 kNm		
Wpl.z	116809,6 mm ³		
fy	275,0 N/mm ²		
γMI	1,0		
Interaction factors			
Used part of standard:	Annex B, Table B1-B3		
kzz	0,898	$k_{yy}=0.893$	0.56
Cmz	0,553	$C_{mz}=0.55$	0,55
		····· / ·	· ·



# WE-40 Simply supported beam

Figure 73 simply supported beam. The lateral deflections and twist rotations are prevented at midspan.

#### A) Verification

The Behaviour and Design of Steel Structure to EC3 (fourth edition): 7.7.4 Example 4

S 275 EN 10025-2, UB 254x146x37



Fig.73 Simply supported beam





Analysis results

#### Moment diagram



Bending moment value at midspan (4500 mm)



Load combination	<b>ConSteel first order</b> analysis results [kNm]	<b>Reference value</b> [kNm]	Difference[%]
Combination 1	45,00	45,00	0,0

## **Beam verification**



# **Cross section resistance check**

Compression				
Co	nSteel results		Reference results	Difference[%]
Compression				
	Utilization	15,4 %		
	Section class	1	No results	
	Applied part of stand	6.2.4 (1)-(2) - (6.9-6.11) formula		
	NEd	-200,0 kN		
	No,Rd	1 297,1 kN		
	Α	4 716,6 mm ²		
	fy	275,0 N/mm ²		
	γM0	1,0		



# Bending about the major axis

ConSteel results		Reference results	Difference[%]
Bending about the majo			
Utilization	33,9 %		
Section class	1		
Applied part of stand	6.2.5 (1)-(3) - (6.12-6.15) formula	M _{c,Rd} =132,8 kN	0,0
My,Ed	-45,0 kNm		
My,c,Rd	132,9 kNm		
Wpl,y,min	483 230,8 mm ³		
fy	275,0 N/mm ²		
γмо	1,0		

#### Minor axis shear

Co	ConSteel results		Reference results	Difference[%]
	Minor axis shear			
	Utilization	3,6 %		
	Section class	1		
Applied part of stand Vz,Ed Vz,o,Rd Az fy	6.2.6 (1)-(3) - (6.17, 6.18) formula			
	-10,0 kN			
	Vz,c,Rd	279,3 kN	No results	
	1 759,4 mm ²			
	fy	275,0 N/mm ²		
	γΜ0	1,0		

# Stability check of the beam

Strong axis buckling			
ConSteel results		Reference results	Difference[%]
NEd	200,0 kN		
Nb,Rd	902,6 kN	N _{b,rd} =900kN	0,29
Nor	1418,0 kN		
L	9000 mm		
k	0,999	$\lambda = 0.960$ $\phi = 1.041$ $\chi = 0.693$	0.42
λ	0,956		0,42
α	0,210		0.38
Φ	1,037		0,38
χ	0,696		0,75
Α	4716,6 mm ²		
fy	275,0 N/mm ²		
γM1	1,0		



# Weak axis buckling

ConSteel results		Reference results	Difference[%]
NEd	200,0 kN		
Nb,Rd	448,6 kN	N _{b,rd} =449kN	0,09
Nor	584,0 kN		
L	4500 mm		
k	0,999	A 1 100	0.0
λ	1,490	λ=1,490	0,0
α.	0,340	+ 1.920	0.06
Φ	1,830	$\psi = 1,829$	0,00
χ	0,346	χ=0,540	0,0
A	4716,6 mm ²		
fy	275,0 N/mm ²		
γM1	1,0		

Edicial torsional buckning (see 0.15.2 page 270)
--------------------------------------------------

ConSteel results		Reference results	Difference[%]
My,Ed	45,0 kNm		
My,b,Rd	123,6 kNm	$M_{b,rd}=121,4kN$	1,81
Mer	205,7 kNm		
L	4500 mm		
k	0,998		
kw	0,982		
C1	1,835		
C2	1,000		
C3	0,943		
Zg	0 mm		
λLT	0,804		
αιτ	0,340		
Φ	0,811	φ _{LT} =0,828	2,05
χLT	0,815		
%LT,mod	0,930		
f	0,876	f=0,878	0,23
<b>k</b> ₀	0,752		
Wply	483230,8 mm ³		
fy	275,0 N/mm ²		
γMI	1,0		



ConSteel results		Reference	Difference[%]
		results	
Summary of results			
Used capacity	60,4%	61,2%	1,31
Used part of standard:	6.3.3 (6.61-6.62) formula		
Applied method for interaction factors	Method 2 (Annex B)		
Strong axis buckling			
Summary of results			
Used capacity in lateral buckling:	22,2%		
Place of the dominant cross section:	0 mm from the first node		
Number of the dominant finite element:	1		
Place of the dominant FE node:	j		
Class of the dominant cross section for compres	2		
Used part of standard:	6.3.1(6.46-6.49) formula		
Detailed calculation			
Lateral-torsional buckling			
Summary of results			
Used capacity in lateral-torsional buckling:	36,4%		
Place of the dominant cross section:	4500 mm from the first n		
Number of the dominant finite element:	4		
Place of the dominant FE node:	k		
Class of the dominant cross section for compres	1		
Used part of standard:	6.3.2(6.46-6.49) formula		
Detailed calculation			
Interaction factors			
Used part of standard:	Annex B, Table B1-B3	k = 1.052	0.10
kyy	1,051	к _{уу} -1,032	0,10
Сту	0,900		

Interaction of strong axis buckling and lateral-torsional buckling



ConSteel results		Reference	Difference[%]
		results	
Summary of results			
Used capacity	76,3%	76,9%	0,78
Used part of standard:	6.3.3 (6.61-6.62) formula		
Applied method for interaction factors	Method 2 (Annex B)		
Weak axis buckling	^		
Summary of results			
Used capacity in lateral buckling:	44,6%		
Place of the dominant cross section:	0 mm from the first node		
Number of the dominant finite element:	1		
Place of the dominant FE node:	j		
Class of the dominant cross section for compres	2		
Used part of standard:	6.3.1(6.46-6.49) formula		
Detailed calculation			
Lateral-torsional buckling	^		
Summary of results			
Used capacity in lateral-torsional buckling:	36,4%		
Place of the dominant cross section:	4500 mm from the first n		
Number of the dominant finite element:	4		
Place of the dominant FE node:	k		
Class of the dominant cross section for compres	1		
Used part of standard:	6.3.2(6.46-6.49) formula		
Detailed calculation			
Interaction factors			
Used part of standard:	Annex B, Table B1-B3	k = 0.873	0.0
kzy	0,873	к _{zy} -0,073	0,0
CmLT	0,600		

Interaction of weak axis buckling and lateral-torsional buckling



# 3.2 Simple structures

# WE-41 Analysis of a single bay portal frame

Figure 74 shows a single bay portal frame model made from hot rolled sections. The column base joint is pinned all other joints are rigid.A) Verification

Access Steel example (SX029): Elastic analysis of a single bay portal frame



Fig.74 Single bay portal frame with hot-rolled sections






## Loads Permanent loads





Name	Limit state		Permanent	Imperfection	Snow	Wind left
Load combination-101	(ULS) Ultimate	-	1,35	1	1,5	0
Load combination-102	(ULS) Ultimate	-	1	0	0	1,5
Load combination-103	(ULS) Ultimate	-	1,35	0	1,5	0,9
Load combination-104	(ULS) Ultimate	-	1	0	1,5	0,9
Load combination-105	(ULS) Ultimate	-	1,35	0	0,75	1,5
Load combination-106	(ULS) Ultimate	-	1	0	0,75	1,5

## Analysis results

## Moment diagram – Combination 101



## Bending moment value at beam to column joint

Load combination	on ConSteel first order analysis results [kNm]		<b>Reference value</b> [kNm]		Difference[%]		
	Left corner	Right corner	Left corner	Right corner	Left corner	Right corner	
Combination 101	751	755	748	755	+0,4	0,0	
Combination 102	-439	-233	-446	-235	-1,6	-0,9	
Combination 103	361	485	356	483	+1,4	+0,4	
Combination 104	286	410	281	408	+1,7	+0,4	
<b>Combination 105</b> -132 74		74	-140	72	-5,7	+2,7	
Combination 106	-207	0,6	-215	-3	-3,7	-	



## **Column verification**

# Section classification ConSteel results Reference result All plates are class 1

## **Cross section resistance check**

Compression			
ConSteel results		Reference results	Difference[%]
Compression			
Utilization	3,8 %		
Section class	1		
Applied part of standard	6.2.4 (1)-(2) - (6.9-6.11) formula		
NEd	-163,7 kN	N 4200 I N	0
No,Rd	4 289,6 kN	N _{Rd} =4290 KN	0
Α	15 598,4 mm ²		
fy	275,0 N/mm ²		
γM0	1,0		

## Bending about the major axis

ConSteel results		Reference	Difference[%]
		results	
Bending about the major axis			
Utilization	79,6 %		
Section class	1		
Applied part of standard	6.2.5 (1)-(3) - (6.12-6.15) formula		
My,Ed	-768,4 kNm		0.1
My,c,Rd	965,9 kNm	M _{y,Rd} =965,8 KN	0,1
Wpl,y,min	3 512 399,7 mm ³		
fy	275,0 N/mm ²		
<b>γ</b> Μ0	1,0		



#### Minor axis shear

ConSteel results		Reference	Difference[%]
		results	
Minor axis shear			
Utilization	9,6 %		
Section class	1		
Applied part of standard	ied part of standard 6.2.6 (1)-(3) - (6.17, 6.18) formul		
Vz,Ed	-127,8 kN	V 1220 LN	0.0
Vz,c,Rd	1 330,3 kN	$V_{Rd}$ =1330 KN	0,0
Az	8 378,4 mm ²		
fy	275,0 N/mm ²		
γмо	1,0		

# Stability check of the column

# Strong axis (y-y) flexural buckling

ConSteel results		Reference results	Difference[
			%]
Used capacity in lateral buckling:	4,1%		
Place of the dominant cross section:	0 mm from the first no		
Number of the dominant finite element:	1		
Place of the dominant FE node:	j		
Class of the dominant cross section for compres	1		
Used part of standard:	6.3.1(6.46-6.49) form		
NEd	173,3 kN		
Nb,Rd	4209,2 kN		
Ner	53258,8 kN	N _{cr} =53190 kN	0,1
L	5988 mm		
k	1,000		
λ	0,284	λ=0,284	0,0
α	0,210		
Ф	0,549		
χ	0,981	$\gamma = 0.0813$	0.0
A	15598,5 mm ²	λ 0,7015	0,0
fy	275,0 N/mm ²		
γM1	1,0		



## Weak axis (z-z) flexural buckling

ConSteel results		Reference	Difference[%]
		results	
Used capacity in lateral buckling:	11,6%		
Place of the dominant cross section:	0 mm from the first n		
Number of the dominant finite element:	1		
Place of the dominant FE node:	j		
Class of the dominant cross section for compres	1		
Used part of standard:	6.3.1(6.46-6.49) form		
NEd	173,3 kN		
Nb,Rd	1493,1 kN		
Ner	1947,1 kN	N _{cr} =1956 kN	0,5
L	5988 mm		,
k	1,000		
λ	1,484	λ=1,484	0,0
α	0,340		
Ф	1,820		
χ	0,348	0.0405	0.4
Α	15598,5 mm ²	χ=0,3495	0,4
fy	275,0 N/mm ²		
γм1	1,0		



Lateral torsional buckling

ConSteel results		Reference results	Differen
			ce[%]
Used capacity in lateral-torsional buckling:	91,0%		
Place of the dominant cross section:	5988 mm from the fire		
Number of the dominant finite element:	6		
Place of the dominant FE node:	k		
Class of the dominant cross section for compres	1		
Used part of standard:	6.3.2(6.46-6.49) form		
	<u>.</u>		
My,Ed	753,3 kNm		
My,b,Rd	827,6 kNm		
Mor	1431,1 kNm	M _{cr} =1351 kNm	5,9
L	5988 mm		
k	1,000		
kw	1,000		
C1	1,879		
C2	1,000		
<b>C</b> 3	0,939		
Zg	0 mm	$\lambda_{r} = -0.8455$	28
λLT	0,822	$\kappa_{\rm PI} = 0.0433$	2,0
αιτ	0,490		
Φ	0,857		
χLT	0,750	χ _{LT} =0,7352	2,0
%LT,mod	0,856		
f	0,876		
ko	0,752		
Wpl.y	3515482,3 mm ³		
fy	275,0 N/mm ²		
γM1	1,0		



## Interaction factors

C	ConSteel results		Reference	D
			results	ifference
				[%]
	kzy	0,513	k _{zy} =0,5138	0,2
	Сту	0,963	C _{my} =0,9641	0,1
	CmLT	1,000	C _{mLT} =0,9843	1,6
	μz	0,940	μ _z =0,9447	0,5
	Сгу	0,927	$C_{zy}=0.9318$	0,5
	kyy	0,982	$k_{yy}=0.9818$	0,0
	Сплу	0,963	$C_{mv}=0.9641$	0.2
	CmLT	1,000	$C_{my} = 0.9843$	1.6
	μ	1,000	$C_{\rm mL1} = 0,9015$	0.0
	Суу	0,984	$\mu_{y} = 0,3333$	12.0
			$C_{yy}=0,8739$	12,7



# WE-42 Analysis of a continuous column in a multi-storey building using an H-section

**Figure 77** shows a multi-storey frame model made from hot rolled sections. It is calculated with two different support systems. The designed column is signed with pink colour.



Fig.77 Multi-storey frame

## A) Verification

Access Steel example (SX010): <u>Continuous column in a multi-storey building using an H-section</u>

### Loads

Normal force on the top of the columns: 743 kN



## a) non-sway frame



## Fig.78 Support of the non-sway frame

## Effective length factor

According to the Access Steel example: 0,601

## Buckling resistance of the column

ConSteel results		Reference	Difference	
		results	[%]	
NEd	743,0 kN			
Nb,Rd	1784,9 kN	Nb,rd=1784kN	+0,05	
Ner	13242,8 kN	Ncr=13250kN	-0,05	
L	4000 mm			
k	0,601		0	
λ	0,380	λ=0,38	0	
α	0,340		0	
Φ	0,603	φ=0,603	0	
χ	0,934	χ=0,934	0	
Α	5383,2 mm ²			
fy	355,0 N/mm ²			
γM1	1,0			



## b) sway frame



## Fig.36 Support of the sway frame

## Effective length factor

According to the Access Steel example: 1,079

ConSteel	ConSteel results		Difference [%]
NEd	743,0 kN		
Nb,Rd	1516,9 kN	N _{b,rd} =1516kN	+0,05
Nor	4108,5 kN	N _{cr} =4102kN	+0,16
L	4000 mm		
k	1,079		0
λ	0,682	λ=0,682	
α	0,340	1 0 0 1 5	0
Φ	0,815	φ=0,815	0
X	0,794	χ=0,794	Ŭ
Α	5383,2 mm ²		
fy	355,0 N/mm ²		
γM1	1,0		

## Buckling resistance of the column



# 4. Special issues

## WE-43 Dynamic analysis of a footbridge

**Figure 79** shows a 120m span steel footbridge. This example shows the comparison of the dynamic Eigen frequencies with other software products and with the on-site measurements. (The ConSteel model was created by Péter Kolozsi M.Sc structural engineer student at BUTE.)



Fig.79 Footbridge



Fig.80 Footbridge ConSteel model





*Fig.82* Second dynamic eigenshape (0,61 Hz)



Fig.82 Third dynamic eigenshape (1,30 Hz)

		Eigenfrequencies [Hz]								
	1	2	3	4	5	6	7	8	9	10
ConSteel	0,57	0,61	1,30	1,41	1,51	1,68	2,26	2,41	2,86	2,90
Midas Civil	0,58	0,62	1,24	1,32	1,52	1,68	2,12	2,37	2,86	2,86
Ansys	0,60	0,61	1,15	1,46	1,52	1,74	2,15	2,44	2,83	2,89
Measurements at site #1	0,54	0,56	1,10	1,46	1,46	1,68	2,15	2,54	2,83	2,95
Measurements at site #2	0,71	0,71	1,22	1,49	1,49	1,81	2,31	2,59	2,83	2,95





# **5. Reference publications with ConSteel results**

Feldmann, M.; Sedlacek, G.; Wieschollek, M.; Szalai, J.: Biege- und Biegedrillknicknachweise nach Eurocode 3 anhand von Berechnungen nach Theorie 2. Ordnung. In: Stahlbau, 1 (2012), S. 1-12 (PDF)

Wieschollek, M.; Schillo, N.; Feldmann, M.; Sedlacek, G.: Lateral-torsional buckling checks of steel frames using second-order analysis. In: Steel Construction - Design and Research, 2 (2012), S. 71-86

Wieschollek, M.; Feldmann, M.; Szalai, J.; Sedlacek, G.: Biege- und Biegedrillknicknachweise nach Eurocode 3 anhand von Berechnungen nach Theorie 2. Ordnung. In: Festschrift Gerhard Hanswille, Institut für Konstruktiven Ingenieurbau, Bergische Universität Wuppertal (2011), S. 73-95

Szalai, J.: The "General Method" of EN 1993-1-1 New Steel Constructions April 2011 (PDF)

Szalai, J.: Practical application of the "General Method" of EN 1993-1-1 New Steel Constructions May 2011 (PDF)

Z. Nagy and M. Cristutiu: Local and Global Stability Analysis of a Large Free Span Steel Roof Structure Civil-Comp Press, 2012 Proceedings of the Eleventh International Conference on Computational Structures Technology

Z. Nagy and M. Cristutiu: Application of monitoring to ensure structural robustness 6th European Conference on Steel and Composite Structures. Edited by Dunai L at al. Budapest, Hungary, 2011.

Szalai J, Papp F. Nowe trendy w normach: EUROKOD 3 – efektywne globalne projektowanie konstrukcji. Inzynier Budownictwa, 81/2, pp. 39-43. 2011.

Szalai J, Papp F. Nowe trendy w normach: EUROKOD 3 – efektywne globalne projektowanie konstrukcyjne Analiza oparta na modelu 3D przy użyciu ogólnej metody elementów skończonych belkowo-słupowych. Inzynier Budownictwa, 84/5, pp. 35-42. 2011.

Szalai J, Papp F. Theory and application of the general method of Eurocode 3 Part 1-1. 6th European Conference on Steel and Composite Structures. Edited by Dunai L at al. Budapest, Hungary, 2011.

Wald F, Papp F, Szalai J, Vídenský J. Obecná metoda pro vzpěr a klopení. SOFTWAROVÁ PODPORA NÁVRHU OCELOVÝCH A DŘEVĚNÝCH KONSTRUKCÍ (Software Solutions for Steel and Timber Structures), pp. 48-57., Prague, 2010.

Papp F, Szalai J. New approaches in Eurocode 3 – efficient global structural design. Part 0: An explanatory introduction. Terästiedote (Finnish Steel Bulletin), 5, Helsinki, 2010.



Papp F, Szalai J. New approaches in Eurocode 3 – efficient global structural design. Part 1: 3D model based analysis using general beam-column FEM. Terästiedote (Finnish Steel Bulletin), 5, 2010.

Szalai J. Use of eigenvalue analysis for different levels of stability design. International Colloquium on the Stability and Ductility of Steel Structures. Edited by Batista E at al. Rio de Janeiro, Brasil, 2010.

Badari B, Papp F. Calibration of the Ayrton-Perry resistance formula – A new design formula for LTB of simple beams. 6th European Conference on Steel and Composite Structures. Edited by Dunai L at al. Budapest, Hungary, 2011.